Euclidea

1. 6	γ	
	1.1	Angle of 60°
	1.2	Perpendicular Bisector
	1.3	Midpoint
	1.4	Circle in Square
	1.5	Rhombus in Rectangle
	1.6	Circle Center
	1.7	Inscribed Square 🚖
2. /	3	
	2.1	Angle Bisector
	2.2	Intersection of Angle Bisectors
	2.3	Angle of 30°
	2.4	Double Angle
	2.5	Cut Rectangle
	2.6	Drop a Perpendicular
	2.7	Erect a Perpendicular
	2.8	Tangent to Circle at Point 🛣
	2.9	Circle Tangent to Line
		Circle in Rhombus
3. ^	γ	
	3.1	Chord Midpoint
	3.2	Triangle by Angle and Orthocenter
	3.3	Intersection of Perpendicular Bisectors
	3.4	Three Equal Segments - 1
	3.4	Circle through Point Tangent to Line 🖈
		Midpoints of Trapezoid Bases 🛠
		Angle of 45°
		Lozenge
		Center of Quadrilateral 🛠
4.8		
		Double Segment
		Angle of 60° - 2 \bigstar
		Circumscribed Equilateral Triangle :
		Equilateral triangle in Circle 🛣
		Cut Two Rectangles
		Square Root of 2
		Square Root of 3
	4.8	
		Square by Opposite Midpoints 🌙
	4.10	1 3 3
J	4.11	Square by Two Vertices ద
$5. \varepsilon$		
		Parallel Line
		Parallelogram by Three Vertices
		Line Equidistant from Two Points - 1
	5.4	Line Equidistant from Two Points - 2

5.5 Hash 5.6 Shift Angle 5.7 Line Equidistant from Two Lines 🖈 5.8 Circumscribed Square 5.9 Square in Square 5.10 Circle Tangent to Square Side 🌙 $6.\varepsilon$ 6.1 Point Reflection 6.2 Reflection 6.3 Copy Segment 6.4 Given Angle Bisector 6.5 Non-collapsing Compass 🌙 6.6 Translate Segment ☆ 6.7 Triangle by Three Sides 6.8 Parallelogram 6.9 Nine Point Circle ద 6.10 Symmetry of Four Lines 🌙 6.11 Parallelogram by Three Midpoints ☆ $7.\eta$ 7.1 Sum of Areas of Squares 7.2 Annulus 7.3 Angle of 75° 7.4 Line Equidistant from Three Points 7.5 Heron's Problem 7.6 Circumscribed Circle 7.7 Inscribed Circle 7.8 Circle Tangent to Three Lines 🖈 7.9 Segment by Midpoint 7.10 Angle Isosceles 🌙 7.11 Excircle $8.\theta$ 8.1 Perimeter Bisector 8.2 Angle 54° Trisection \checkmark 8.3 Interior Angles 8.4 Regular Octagon 🌙 8.5 Triangle Cleaver 🗙 8.6 Torricelli Point 🖈 8.7 Circle Equidistant from Four Points 8.8 Octagon from Square 8.9 Egyptian Triangle by Side of Length 48.10 Chord Parallel to Segment 🕗 9.19.1 Minimum Perimeter - 1 9.2 Third Proportional 9.3 Harmonic mean of Trapezoid Bases 9.4 Drop a Perpendicular* 9.5 Midpoint* 9.6 Trisection by Trapezoid Diagonals 🖈 9.7 Minimum Perimeter - 2 🗙 9.8 Harmonic Mean of Segments 🖈

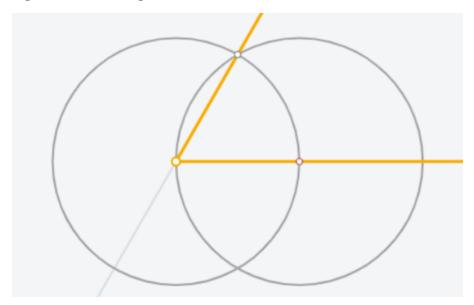
9.9 Triangle by Anlge and Centroid 9.10 Triangle Mid-Segment

```
10. \kappa
    10.1 Tangent of Circle 🌙
    10.2 Outer Tangent
    10.3 Inner Tangent
    10.4 Rotation of 90^{\circ}
    10.5 Rotation of 60^{\circ}
    10.6 Segment Trisection 🌙
   10.7 Segment Trisection*
    10.8 Chord Trisection ☆
    10.9 Three Circles - 1
   10.10 Secant Bisection
    10.11 Three Circles - 2 🏠
    10.12 Center of Rotation ☆
11.\lambda
    11.1 Fourth Proportional
    11.2 Geometric Mean of Segments 🌙
    11.3 Golden Section 🌙
    11.4 Angle of 54^{\circ}
    11.5 Third Parallel Line
           法一 (8 步, 自由度为 3 · 1)
           法二 (7 步, 自由度为 <math>2 + 1)
           法三 (7 步, 自由度为 4 · 1)
           法四 (7步, 自由度为 2·2)
    11.6 Circle in Angle 🌙
    11.7 Geometric Mean of Trapezoid Bases 🌙
    11.8 Regular Pentagon 🌙
    11.9 Point Farthest from Angle Sides
    11.10 Ratio 1 to 5 🌙
12. \mu
    12.1 Triangle by Midpoints 🖈
    12.2 Triangle by Side and Centroid
    12.3 Triangle by Altitude Base Points 🖈
    12.4 Triangle by Tangent Points
    12.5 Triangle by Excenters
    12.6 Equilateral Triangle by Centroid and Two Points
   12.7 Right Triangle by Two Points on Legs
    12.8 Hypotenuse and Altitude 🌙
    12.9 Hypotenuse and Leg 🌙
   12.10 Isosceles Triangle by Tangent Points 🖈
13.\nu
    13.1 Circle Tangent to Line and Circle
       4L
       8E 🖈 🌙
    13.2 Equilateral Triangle - 2
       13.2.1 引理
       7L 🏡 🌙
       13.2.2 逆定理 1
       8E 🖈 🌙
       13.2.3 逆定理 2
    13.3 Equilateral Triangle On Concentric circles
       6L ☆ →
       13.3.1 引理
```


$1.\alpha$

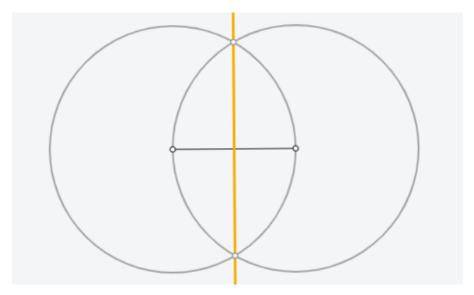
1.1 Angle of 60°

Construct an angle of 60° with the given side.



1.2 Perpendicular Bisector

Construct the perpendicular bisector of the segment.

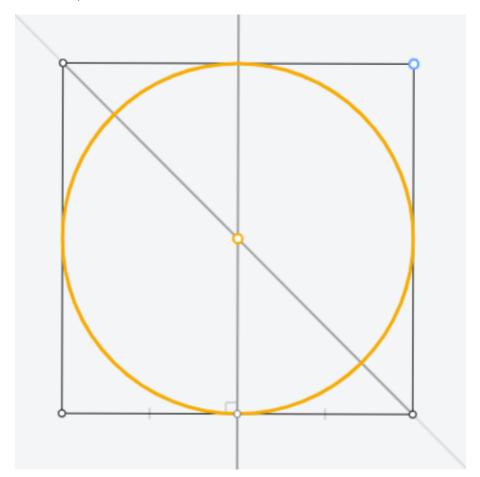


1.3 Midpoint

Construct the midpoint of the segment defined by two points.

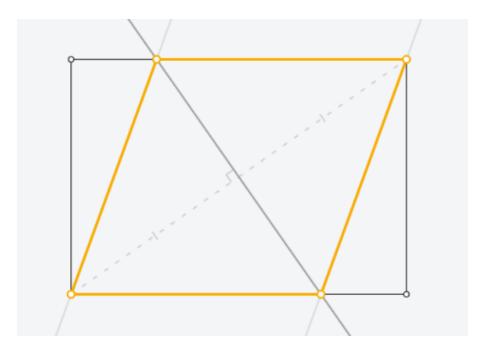
1.4 Circle in Square

Inscribe a circle in the square.



1.5 Rhombus in Rectangle

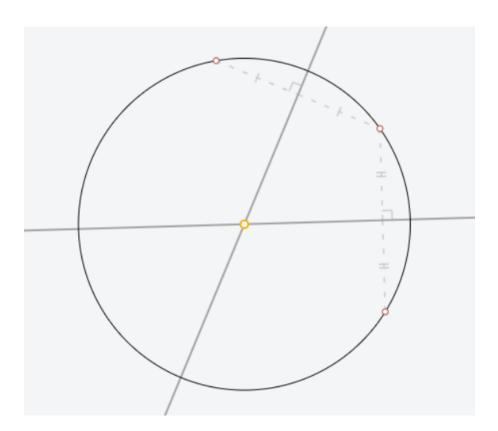
Inscribe a rhombus in the rectangle so that they share a diagonal.



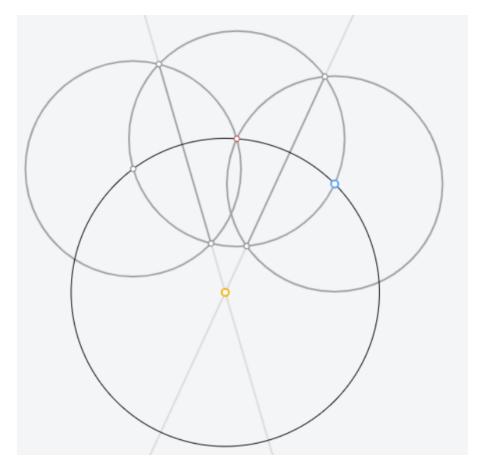
1.6 Circle Center

Construct the center of the circle. Note! L and E goals are independent. To get 3 stars on this level you need to solve it twice: one solution with 2L and the other with 5E.

2L

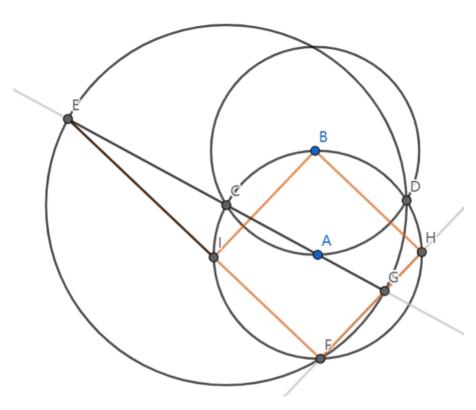


5E



1.7 Inscribed Square 🛠

Inscribe a square in the circle. One vertex of the square is given.



已知圆 A, 求过其上一点 B 作圆的内接正四边形.

- 1. 以 B 为圆心, BA 为半径作圆, 交圆 A 于点 C 与 D;
- 2. 以 C 为圆心, CD 为半径作圆, 交圆 A 于点 D 与 F;
- 3. 连接 AC 并延长, 交圆 C 于点 E;
- 4. 连接 EF 交 圆 A 于点 I;
- 5. 连接 *IB*;
- 6. 连接 FG 并延长, 交圆 C 于点 H;
- 7. 连接 HB.

不妨令圆 A 半径为 R, 则 $CF = CD = \sqrt{3}R$, $\triangle CDF$ 是等边三角形, F 为求作正方形的一个端点.

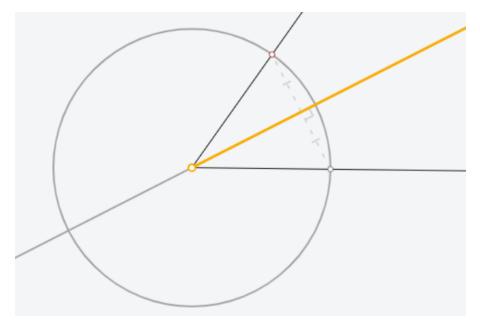
 $\angle AFI=\angle CFE+\angle AFC=\angle CEF+\angle AFC=rac{1}{2}\angle ACF+\angle AFC=45^\circ$, 故 FI 与 IB 为求作正方形的两条边.

EG 是直径, 故 $\angle IFH = 90^{\circ}$, FH = BH 为求作正方形的另外两条边.

作完.

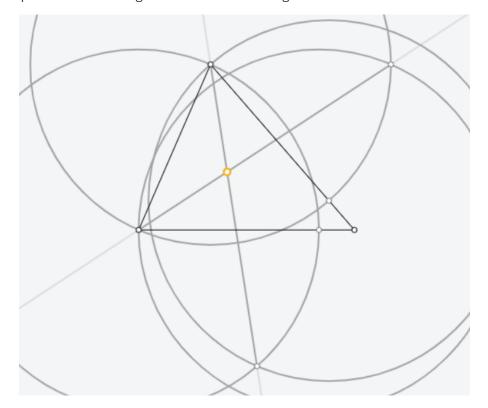
2.1 Angle Bisector

Construct the line that bisects the given angle.



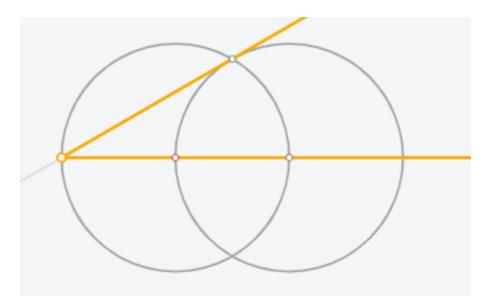
2.2 Intersection of Angle Bisectors

Construct the point where the angle bisectors of the triangle are intersected.



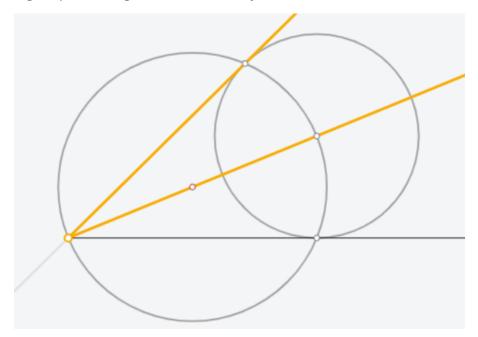
2.3 Angle of 30°

Construct an angle of 30° with the given side.



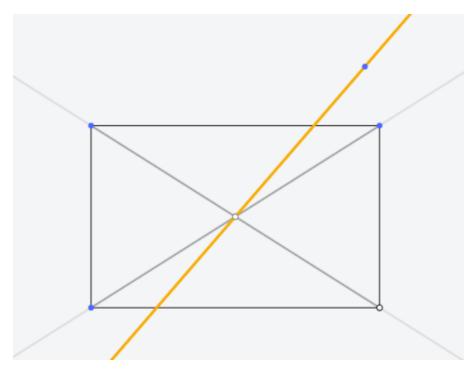
2.4 Double Angle

Construct an angle equal to the given one so that they share one side.



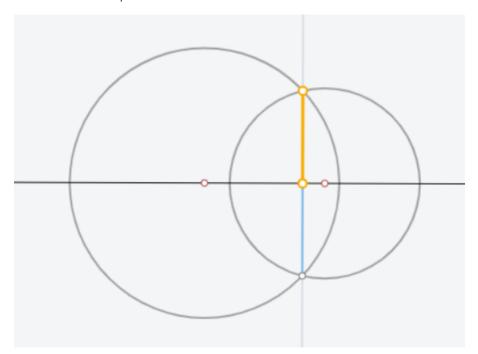
2.5 Cut Rectangle

Construct a line through the given point that cuts the rectangle into two parts of equal area.



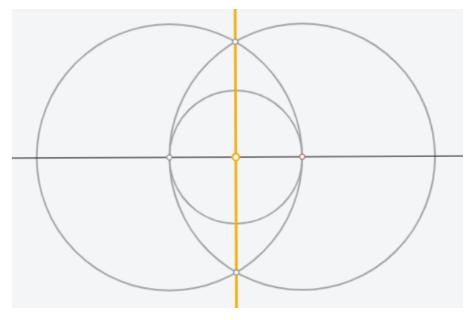
2.6 Drop a Perpendicular

Drop a perpendicular from the point to the line.



2.7 Erect a Perpendicular

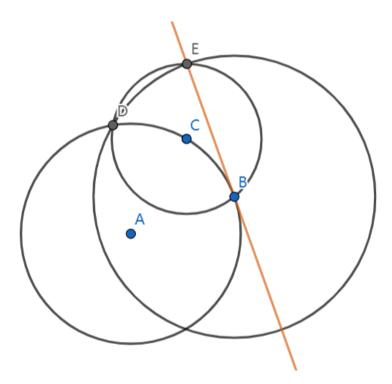
Erect a perpendicular from the point on the line.



2.8 Tangent to Circle at Point 🖈

Construct a tangent to the circle at the given point.

3E



已知圆 A, 求过其上一点 B 作圆的切线.

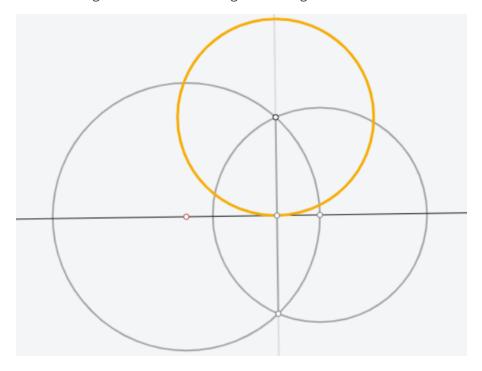
作法

- 1. 以圆上另一点 C 为圆心, CB 为半径作圆, 交圆 A 于点 B 与 D;
- 2. 以 B 为圆心, BD 为半径作圆, 交圆 C 于点 D 与 E.
- 3. 连接 BE.

$$BC \perp DE,\ AC \perp BD,\ \angle EBC = \angle DBC = rac{1}{2} \angle DAC = rac{1}{2} \angle CAB$$
, 由弦切角定理知 BE 为切线.

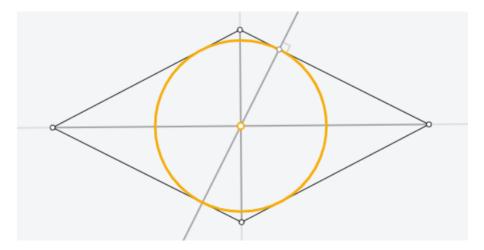
2.9 Circle Tangent to Line

Construct a circle with the given center that is tangent to the given line.



2.10 Circle in Rhombus

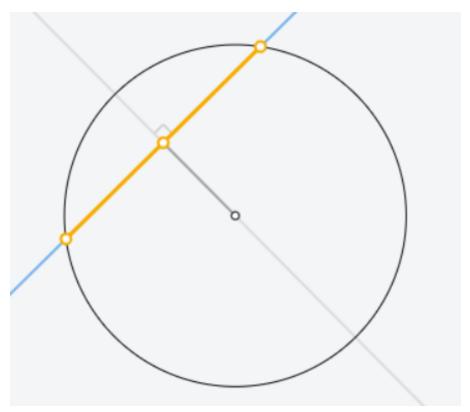
Inscribe a circle in the rhombus.



 $3.\gamma$

3.1 Chord Midpoint

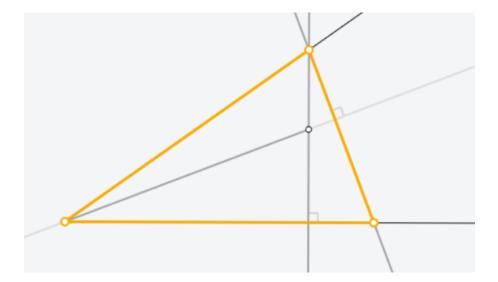
Construct a chord whose midpoint is given.



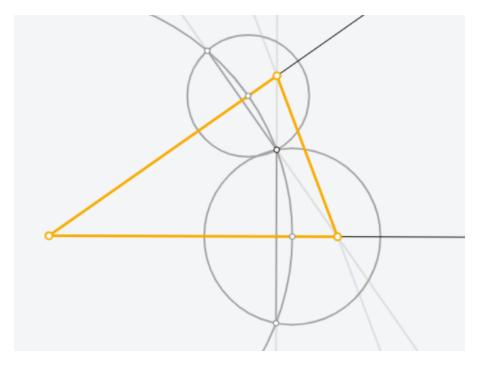
3.2 Triangle by Angle and Orthocenter

Construct a segment connecting the sides of the angle to get a triangle whose orthocenter is in the point O.

3L

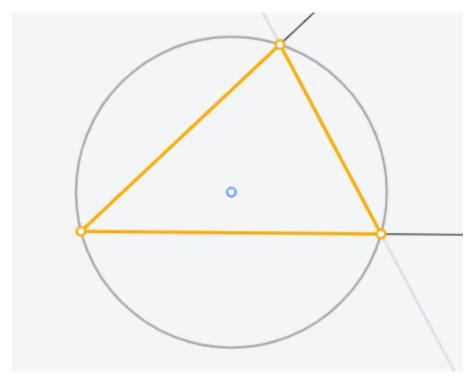


6E



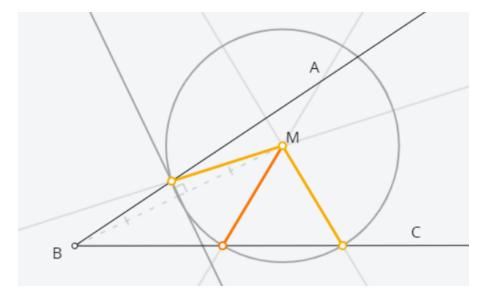
3.3 Intersection of Perpendicular Bisectors

Construct a segment connecting the sides of the angle to get a triangle whose perpendicular bisectors are intersected in the point O.



3.4 Three Equal Segments - 1

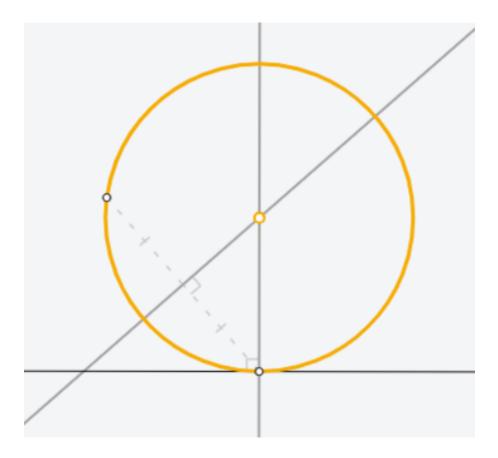
Given an angle ABC and a point M inside it, find points D on BA and E on BC and construct segments DM and ME such that BD = DM = ME.



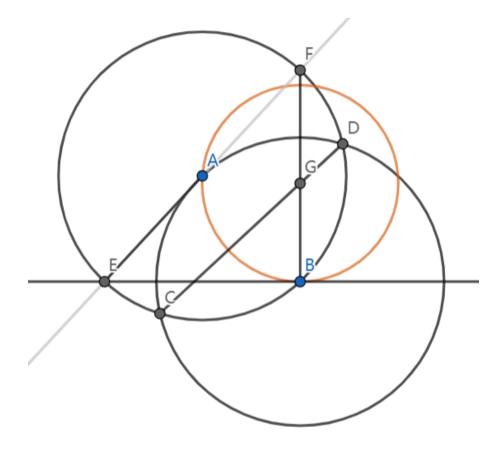
3.4 Circle through Point Tangent to Line 🖈

Construct a circle through the point A that is tangent to the given line at the point B.

3L



6E 🏡



已知一点 A, 一条直线 l 及其上一点 B, 求过 A 作圆且与直线相切于点 B.

作法

- 1. 以 B 为圆心, BA 为半径作圆;
- 2. 以 A 为圆心, AB 为半径作圆, 交圆 B 于点 C 与 D, 交直线 l 于点 B 与 E;
- 3. 连接 EA 并延长, 交圆 A 于点 F;
- 4. 连接 *BF*;
- 5. 连接 CD, 交 AB 于点 G;
- 6. 以 G 为圆心, GA 为半径作圆.

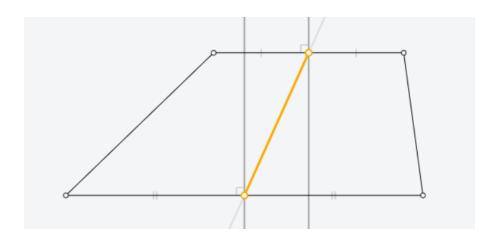
 $FB \perp l, CD$ 是 AB 的中垂线, 故圆 G 即为所求作圆.

作完.

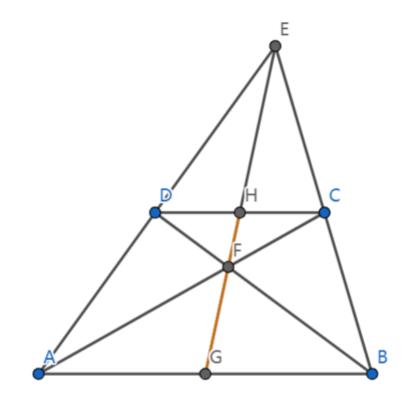
3.6 Midpoints of Trapezoid Bases ☆

Construct a line passing through the midpoints of the trapezoid bases.

3L



5E ☆



已知梯形 ABCD, 其中 AB // CD. 求作梯形上下底中点的连线.

作法

- 1. 延长 *AD*;
- 2. 延长 BC, 交 AD 延长线于点 E;
- 3. 连接 *AC*;
- 4. 连接 BD, 交 AC 于点 F;
- 5. 过 EF 作直线, 分别交 AB 和 CD 于点 G 与 H.

即 HG 即为所求线段, 作完.

证明

法一 平行线分线段成比例

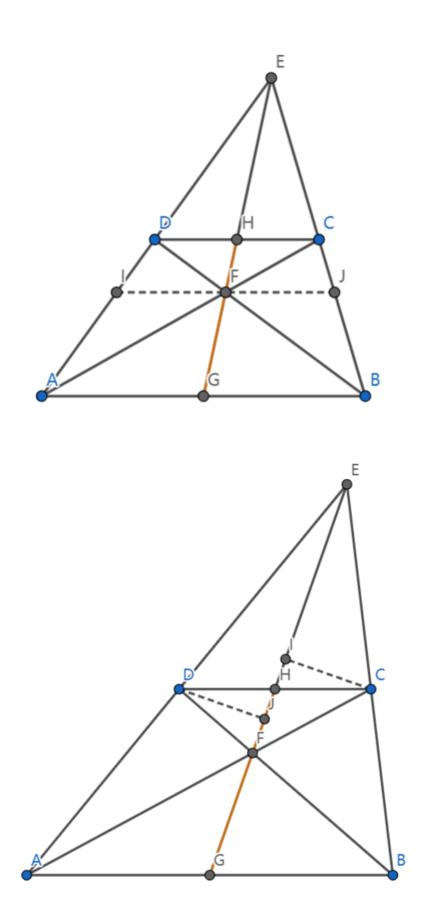
$$rac{DH}{AG} = rac{ED}{EA} = rac{DC}{AB} = rac{DF}{FB} = rac{DH}{GB} \quad \Rightarrow \quad AG = GB$$
, 同理 $DH = HC$.

法二 面积法与比例

如下左图, 过点 F 作 IJ // AB, 则 IJ // CD.

$$S_{ riangle DFA} = S_{ riangle DAB} - S_{ riangle FAB} = S_{ riangle CAB} - S_{ riangle FAB} = S_{ riangle CFB} \quad \Rightarrow \quad IF = FJ$$
,

$$rac{IF}{AG} = rac{EF}{EG} = rac{FJ}{GB} \quad \Rightarrow \quad AG = GB$$
, 同理 $DH = HC$. \square



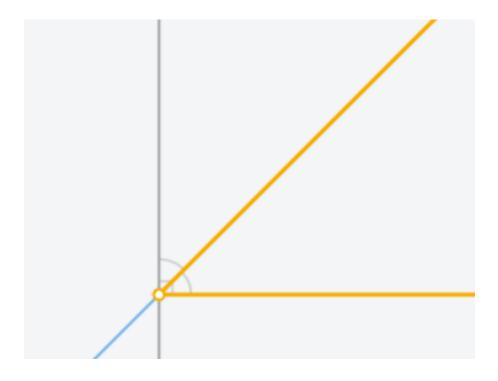
法三 面积法与全等 如上右图, 作 $CI \perp EG$ 于点 I , $DJ \perp EG$ 于点 J .

$$S_{ riangle DFA} = S_{ riangle DAB} - S_{ riangle FAB} = S_{ riangle CAB} - S_{ riangle FAB} = S_{ riangle CFB}$$
 \Rightarrow $S_{ riangle EAF} = S_{ riangle EBF},$ $S_{ riangle EDF} = S_{ riangle EAF} - S_{ riangle EBF} - S_{ riangle EBF} = S_{ riangle ECF}$ \Rightarrow $DJ = CI,$ 故 $\Delta DJH \cong \Delta CIH$ \Rightarrow $DH = HC$, 同理 $AB = GB$. \Box

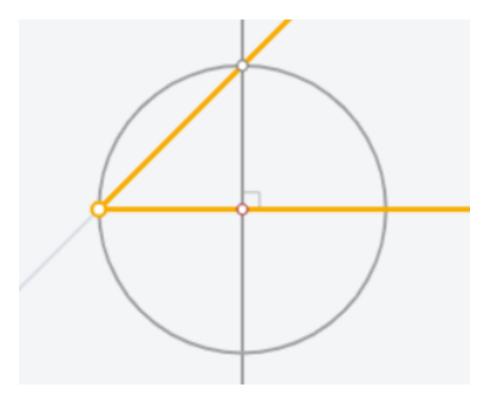
3.7 Angle of 45°

Construct an angle of 45° with the given side.

2L



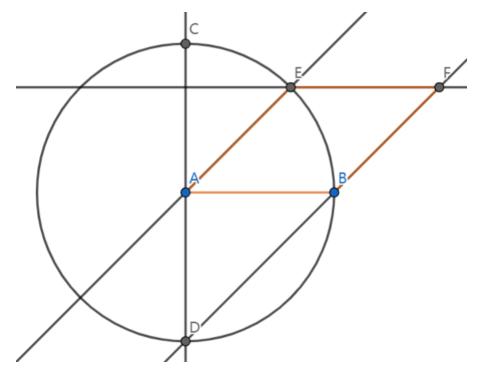
5E



3.8 Lozenge

Construct a rhombus with the given side and an angle of 45° in a vertex.

5L



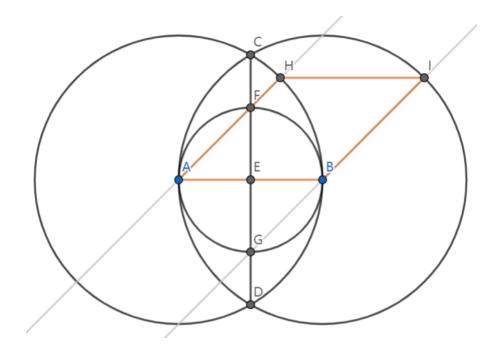
已知线段 AB, 求以 AB 为边作一个平行四边形, 且其中一个角为 45° .

作法

- 1. 过 A 作直线 $l_1 \perp AB$;
- 2. 以 A 为圆心, AB 为半径作圆, 交 l 于点 C 与 D;
- 3. 作 $\angle BAC$ 的角平分线, 交圆 A 于点 E;
- 4. 过 E 作直线 $l_2 \perp CD$;
- 5. 连接 DB 并延长, 交 l_2 于点 F.

作完.

7E



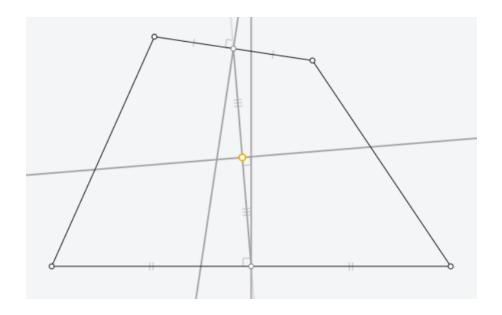
- 1. 以 A 为圆心, AB 为半径作圆;
- 2. 以 B 为圆心, BA 为半径作圆, 交圆 A 于点 C 与 D;
- 3. 连接 CD, 交 AB 于点 E;
- 4. 以 E 为圆心, EA 为半径作圆, 交 CD 于点 F 与 G;
- 5. 连接 AF 并延长, 交圆 A 于点 H;
- 6. 连接 GB 并延长, 交圆 B 于点 I;
- 7.连接 HI.

作完.

3.9 Center of Quadrilateral 🗙

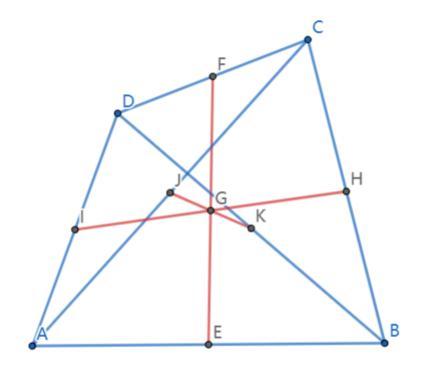
Construct the midpoint of the segment that connects the midpoints of the diagonals of the quadrilateral.

3L



作法

作对边中点的中点. 作完.



证明

如图, E, F, H, I, J, K 分别为 AB, CD, BC, AD, AC, BD 的中点.

将该平面视为复平面,则

$$G = \frac{1}{4}(A + B + C + D)$$

$$= \frac{1}{2}\left(\frac{A+B}{2} + \frac{C+D}{2}\right)$$

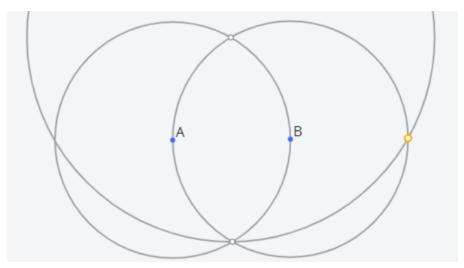
$$= \frac{1}{2}\left(\frac{B+C}{2} + \frac{A+D}{2}\right)$$

$$= \frac{1}{2}\left(\frac{A+C}{2} + \frac{B+D}{2}\right),$$

故四边形 $ABCD$ 的重心 G 是 EF 的中点, 也是 HI 的中点, 还是 JK 的中点.	

4.1 Double Segment

Construct a point C on the line AB such that |AC|=2|AB| using only a compass.

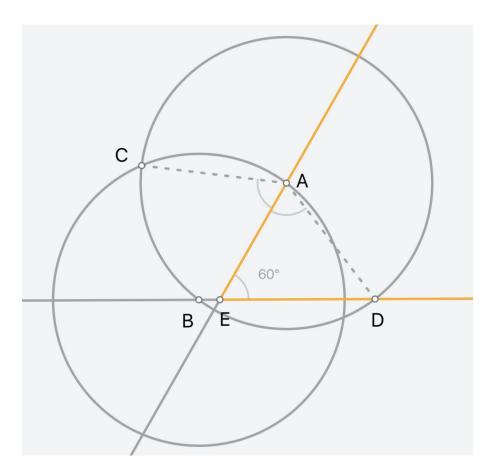


4.2 Angle of 60° - 2 \bigstar

Construct a straight line through the given point that makes an angle of 60° with the given line.

已知一直线 l, 及直线外一点 A, 求过点 A 作直线与 l 夹角为 60° .

3L 🏡



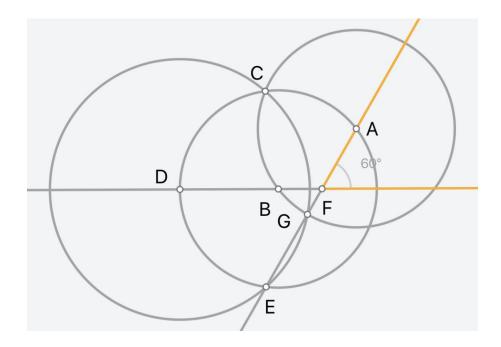
- 1. 以 l 上一点 B 为圆心, BA 为半径作圆;
- 2. 以 A 为圆心, AB 为半径作圆, 交圆 B 于点 C, 交 l 于点 D.
- 3. 作 $\angle CAD$ 的角平分线, 交 l 于点 E.

则 EA 即为所求直线. 作完.

证明

 $\triangle ABC$ 是等边三角形, $\angle CDB = \frac{1}{2} \angle CAB = 30^\circ$,故 $\angle AED = 90^\circ - \angle CDB = 60^\circ$. 证毕.

4E 🏡



作法

- 1. 以 l 上一点 B 为圆心, BA 为半径作圆;
- 2. 以 A 为圆心, AB 为半径作圆, 交圆 B 于点 C, 交 l 于点 D.
- 3. 以 D 为圆心, DC 为半径作圆, 交圆 B 于点 E;
- 4. 连接 *AE*.

则 AE 即为所求直线. 作完.

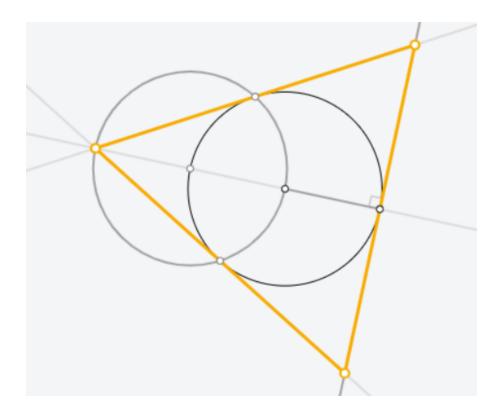
证明

$$\angle CEA = \frac{1}{2} \angle CBA = 30^{\circ}$$
, $\angle BFE = 90^{\circ} - \angle CEA = 60^{\circ}$. 证毕.

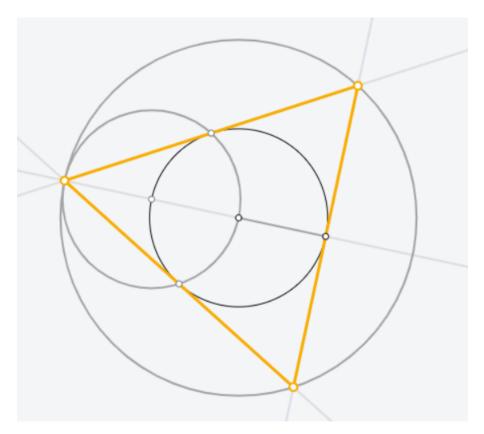
4.3 Circumscribed Equilateral Triangle :

Construct an equilateral triangle that is circumscribed about the circle and contains the given point.

5L



6E

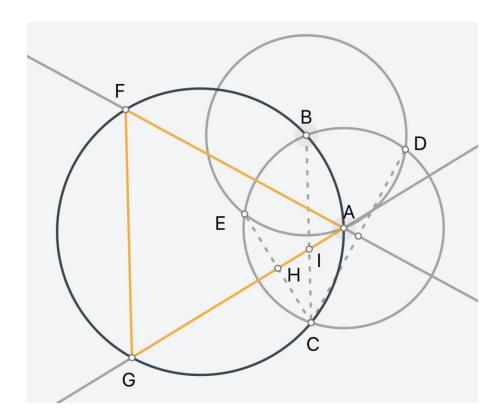


4.4 Equilateral triangle in Circle 🛠

Inscribe an equilateral triangle in the circle using the given point as a vertex. The center of the circle is not given.

给定圆上一点 A (无圆心), 求作圆的内接等边三角形, 其中一个顶点为 A.

5L☆



- 1. 以 A 为圆心, 小于给定圆的直径的长为半径作圆, 交给定圆于点 B 和 C;
- 2. 以 B 为圆心, BA 为半径作圆, 交圆 A 于点 D 与 E;
- 3. 作 CD 的中垂线, 交给定圆与点 A 与 F;
- 4. 作 CE 的中垂线, 交给定圆与点 A 与 G;
- 5. 连接 *FG*,

证明

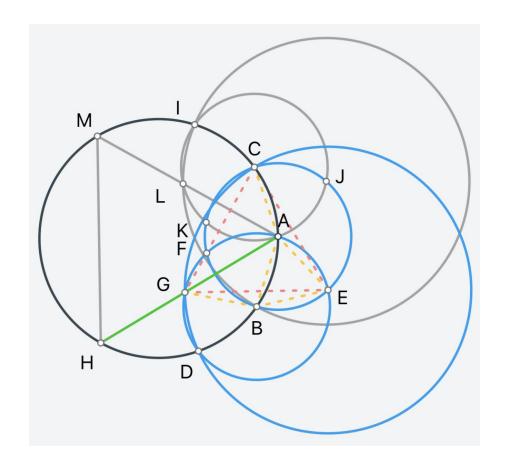
$$\angle FAG = \angle DCE = \frac{1}{2} \angle DAE = 60^{\circ}$$
 ,

$$\angle HIC = 90^{\circ} - \angle BCE = 90^{\circ} - \frac{1}{2} \angle BAE = 60^{\circ}.$$

故 $\triangle AFG$ 为圆的内接等边三角形. 证毕.

注 *CD* 直线上有三点共线.

8E 🏡



- 1. 以 A 为圆心, 小于给定圆的直径的长为半径作圆, 交给定圆于点 B 和 C;
- 2. 以 B 为圆心, BA 长为半径作圆, 交给定圆于点 A 与 D, 交圆 A 于点 E 与 F;
- 3. 以 E 为圆心, EC 长为半径作圆, 交圆 B 于点 D 与 G;
- 4. 连接 AG, 交给定圆于点 H;
- 5. 以 C 为圆心, CA 长为半径作圆, 交给定圆于点 A 与 I, 交圆 A 于点 J 与 K;
- 6. 以 J 为圆心, JI 长为半径作圆, 交圆 C 于点 L;
- 7. 连接 AL, 交给定圆于点 M;
- 8.连接 MH.

证明

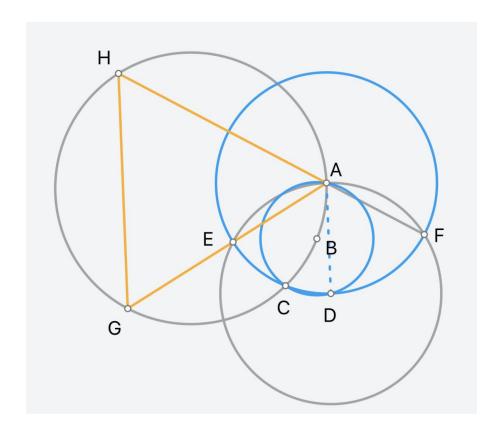
 $\triangle ABE$ 是等边三角形, $\triangle GBE \cong \triangle CAE$,

 $\angle CEG = \angle CEA + \angle AEG = \angle GEB + \angle AEG = 60^{\circ}$, $\triangle CEG$ 是等边三角形.

故 GA 垂直平分 CE, 由 5L 作法知 AH 即为所求等边三角形的一条边. 同理知 $\triangle AHM$ 是圆的内接等边三角形. 证毕.

注 可能一些共点, 暂时还没看. 不看了我

6E



- 1. 以给定圆上一点 B 为圆心, BA 为半径作圆, 交给定圆于点 A 与 C;
- 2. 以 A 为圆心, AC 为半径作圆, 交圆 B 于点 C 与 D;
- 3. 以 D 为圆心, DA 为半径作圆, 交圆 A 于点 E 与 F;
- 4. 连接 AE 并延长, 交给定圆于点 G;
- 5. 连接 FA 并延长, 交给定圆于点 H;
- 6. 连接 GH.

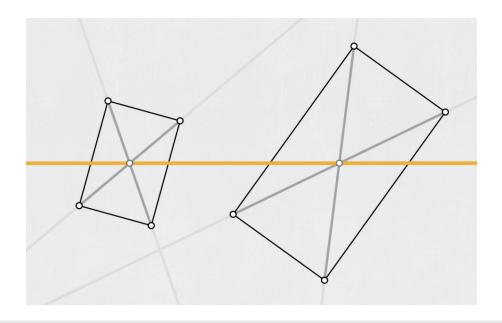
证明

由 2.8 知: AD 为给定圆的切线.

 $\angle FAD = \angle DAE = \angle GAH = 60^{\circ}$, 故 $\triangle AGH$ 是给定圆的内接等边三角形. 证毕.

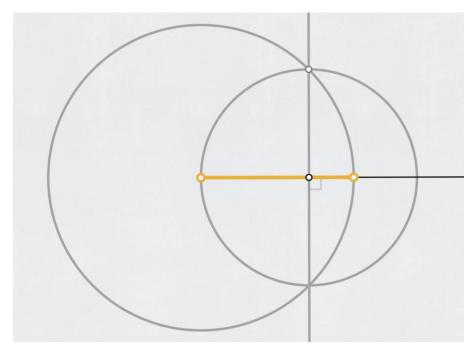
4.5 Cut Two Rectangles

Construct a line that cuts each of the rectangles into two parts of equal area.



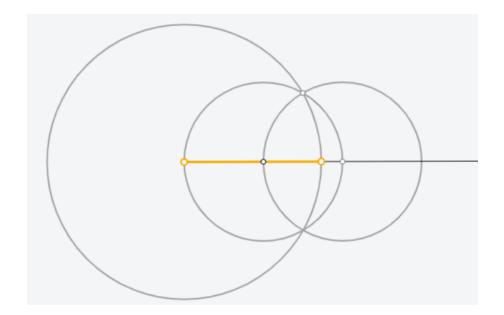
$\textbf{4.6 Square Root of}\ 2$

Let |AB|=1. Construct a point C on the ray AB such that the length of AC is equal to $\sqrt{2}$.



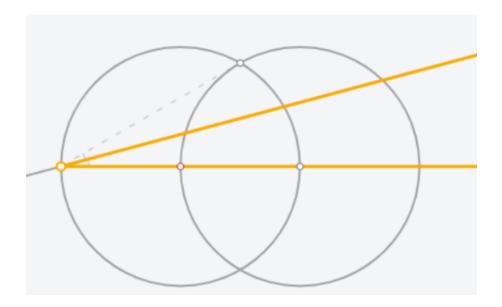
4.7 Square Root of $\boldsymbol{3}$

Let |AB|=1. Construct a point C on the ray AB such that the length of AC is equal to $\sqrt{3}$.

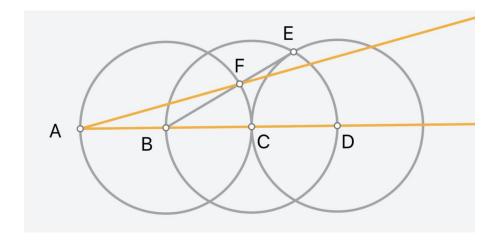


4.8 Angle of 15° \checkmark

3L



5E ☆

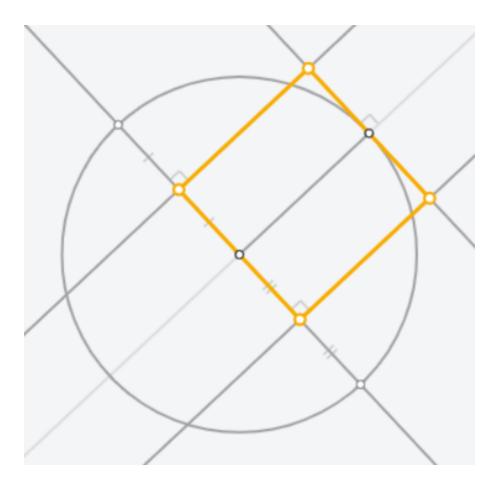


证明

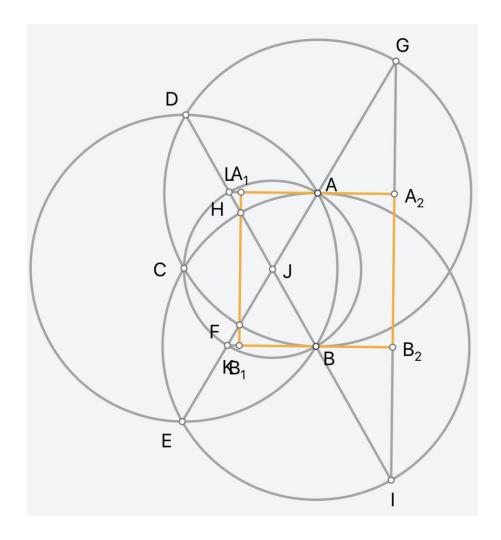
4.9 Square by Opposite Midpoints 🌙

Construct a square, given two midpoints of opposite sides.

6L



10E 🌙



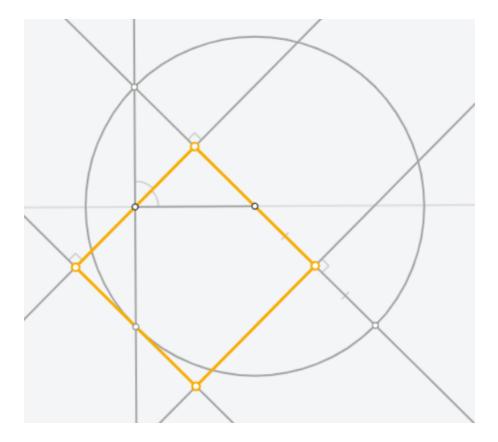
- 1. 以 A 为圆心, AB 长为半径作圆;
- 2. 以 B 为圆心, BA 长为半径作圆, 交圆 A 于点 C;
- 3. 以 C 为圆心, CA 为半径作圆, 交圆 A 于点 B 与 D, 交圆 B 于点 A 与 E;
- 4. 连接 AE, 交圆 A 于点 F 与 G;
- 5. 连接 BD, 交圆 B 于点 H 与 I, 交 AE 于点 J;
- 6. 以 J 为圆心, JA 为半径作圆, 交 AE 于点 K, 交 BD 于点 L;
- 7. 连接 *IG*;
- 8. 连接 LA 并延长, 交 IG 于点 A_2 ;
- 9. 连接 FB 并延长, 交 IG 于点 B_2 ;
- 10. 连接 HF, 交 HA 于点 A_1 , 交 LB 于点 B_1 .

证明

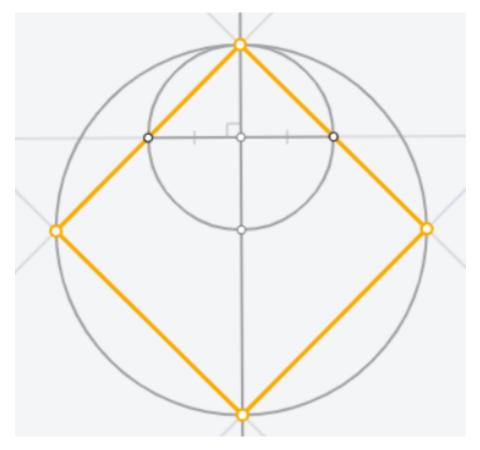
AF 是直径, 故 $AB\perp B_1B_2$. $BB_1=AF\sin 30^\circ=BB_2$, 故四边形 $A_1A_2B_2B_1$ 是正方形, 且 A,B 为中点. 证毕.

4.10 Square by Adjacent Midpoints

Construct a square, given two midpoints of adjacent sides.



10E

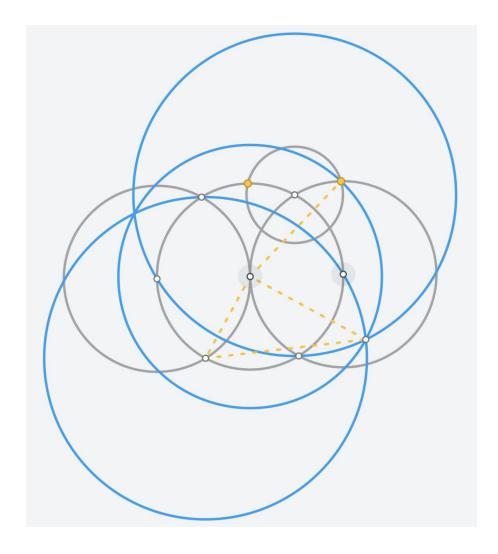


4.11 Square by Two Vertices ☆

Given two vertices of a square. Construct the two other vertices using only a compass.

8E 利用 $\sqrt{2}^2 = \sqrt{3}^2 - 1^2$.

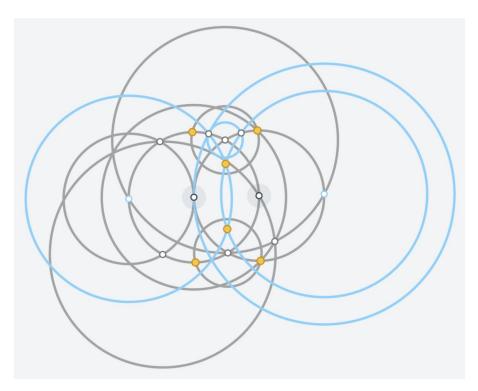
7E



证明

如图作辅助线, 由勾股定理即得.

3V



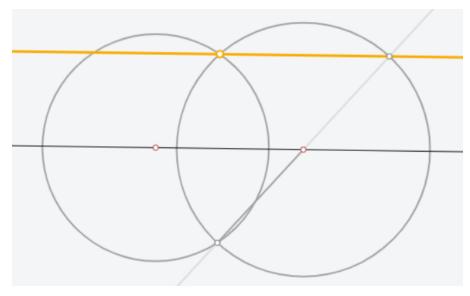
注 只用圆规可以作两点的中点.

$5. \varepsilon$

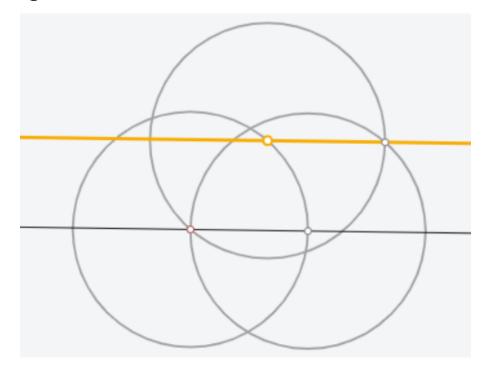
5.1 Parallel Line

Construct a line parallel to the given line through the given point.

4E method 1 \checkmark

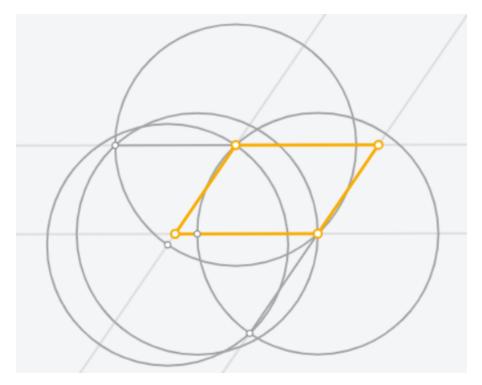


4E method 2 🌙



5.2 Parallelogram by Three Vertices

Construct a parallelogram whose three of four vertices are given.

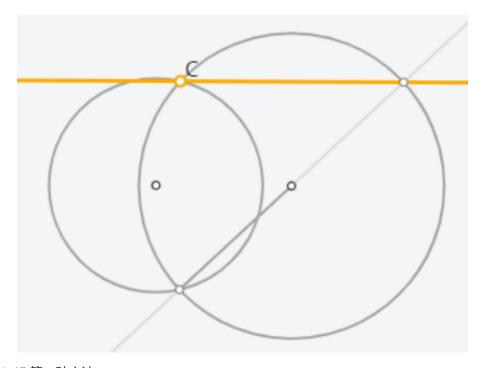


注 利用 5.1.4E 第二种方法.

5.3 Line Equidistant from Two Points - 1

Construct a line through the point C and at equal distance from the points A and B but that does not pass between them.

4E

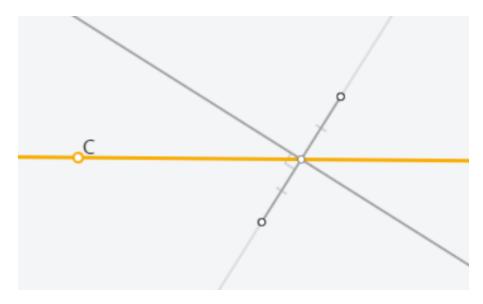


注 利用 5.1.4E 第一种方法.

5.4 Line Equidistant from Two Points - 2

Construct a line through the point C that goes between the points A and B and that is at equal distance from them.

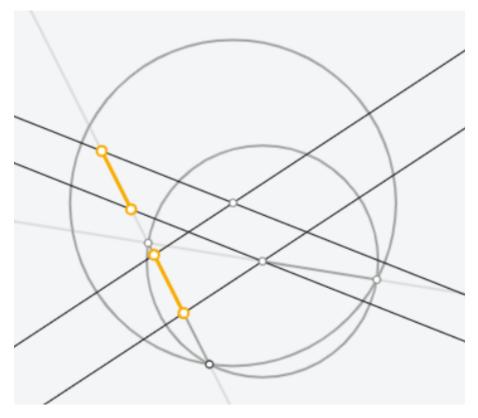
3L 5E



5.5 Hash

Construct a line through the given point on which two pairs of parallel lines cut off equal line segments.

4E

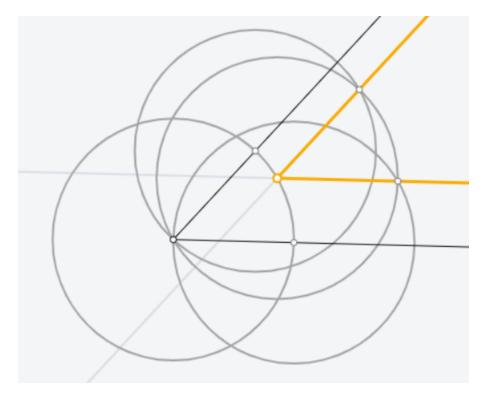


注 利用 5.1.4E 第一种方法.

5.6 Shift Angle

Construct an angle from the given point that is equal to the given angle so that their sides are parallel.

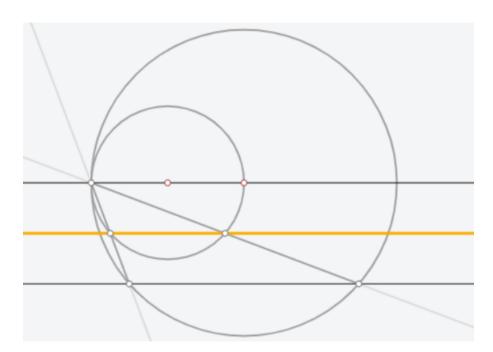
6E



注 利用 5.1.4E 第二种方法.

5.7 Line Equidistant from Two Lines 🖈

Construct a straight line parallel to the given parallel lines that lies at equal distance from them.

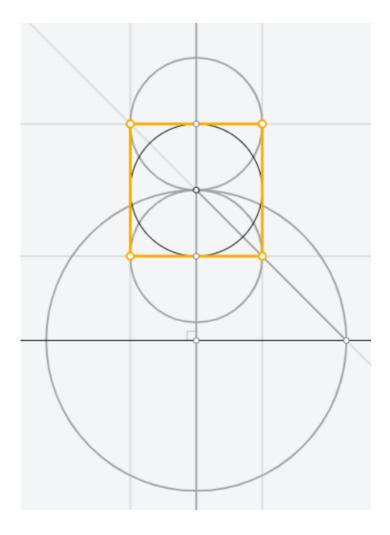


证明 由弦的中垂线的性质即得.

5.8 Circumscribed Square **J**

Circumscribe a square about the circle. Two of its sides should be parallel to the given line.

11E

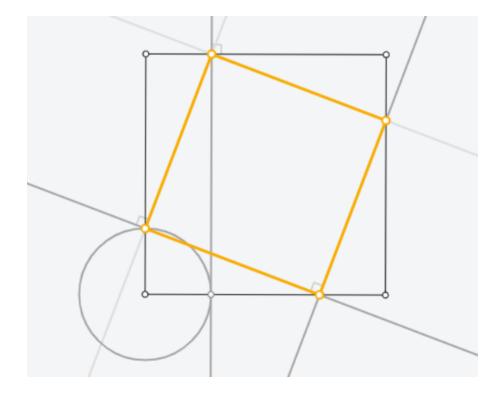


注 利用 45°.

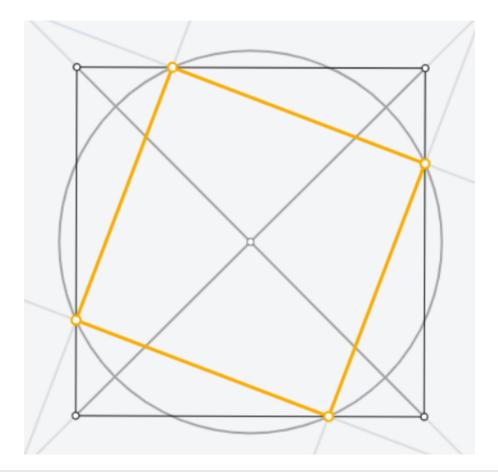
5.9 Square in Square

Inscribe a square in the square. A vertex is given.

6L

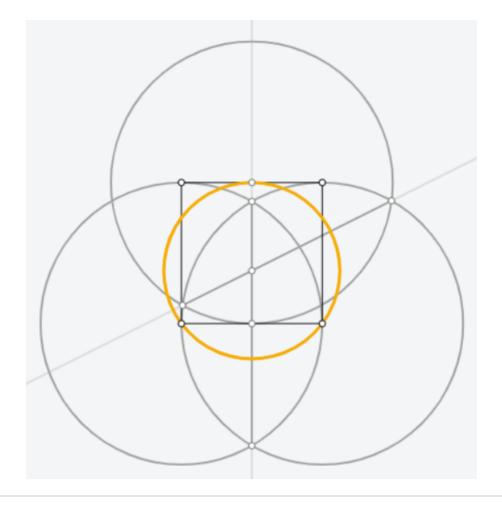


7E



5.10 Circle Tangent to Square Side 🌙

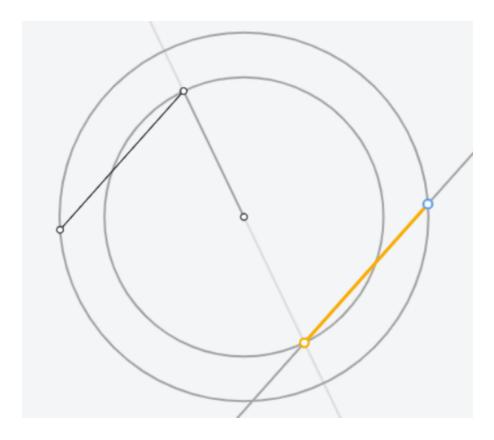
Construct a circle that is tangent to a side of the square and goes through the vertices of the opposite side.

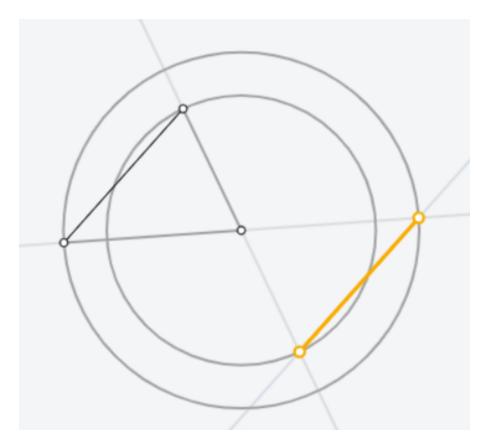


6.1 Point Reflection

Reflect the segment across the point.

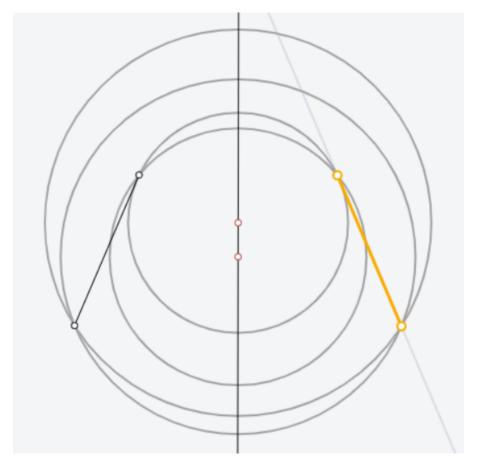
4L





6.2 Reflection

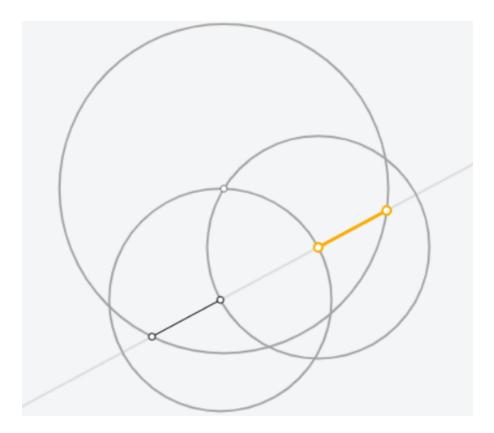
Reflect the segment across the line.



6.3 Copy Segment

Construct a segment from the given point that is equal to the given segment and lies on the same line with it.

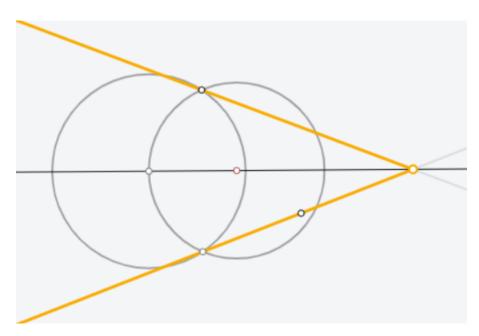
4E



6.4 Given Angle Bisector

Construct two straight lines through the two given points respectively so that the given line is a bisector of the angle that they make.

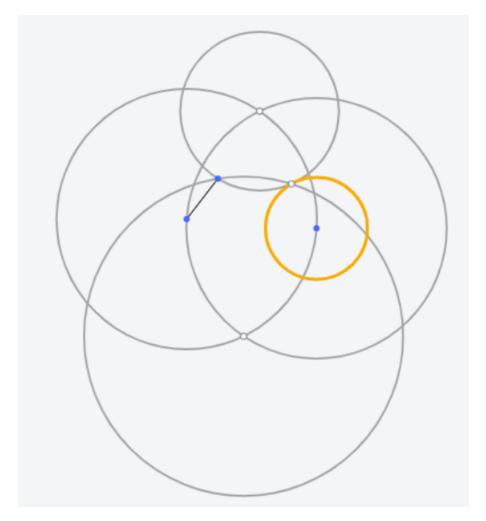
4L 4E



6.5 Non-collapsing Compass **J**

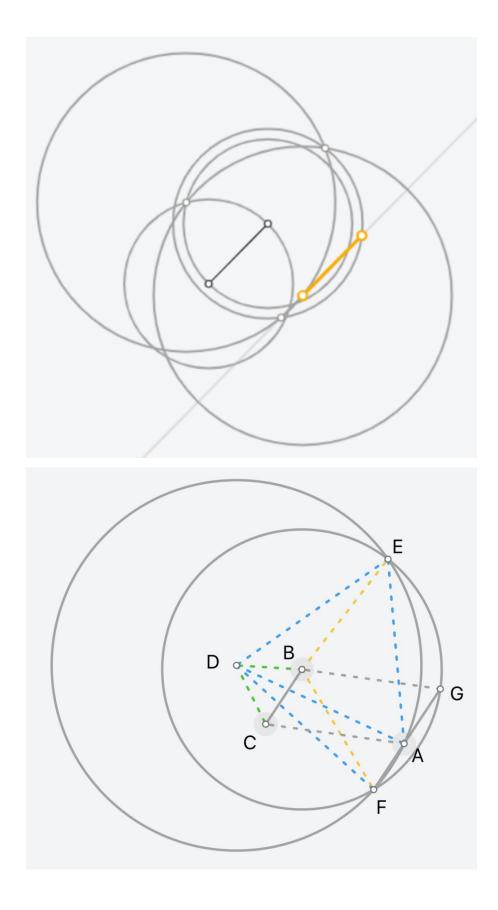
Construct a circle with the given center and the radius equal to the length of the given segment.

5E



6.6 Translate Segment ☆

Construct a segment from the given point parallel and equal to the given segment.



证明

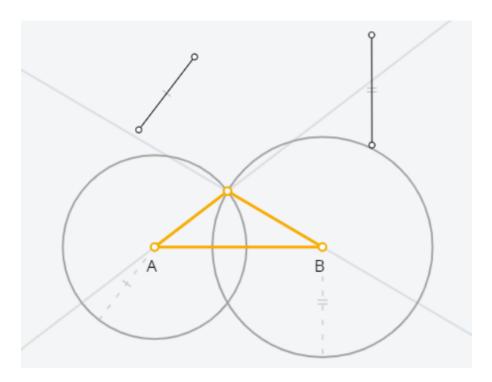
如图, $\triangle BCD$ 和 $\triangle ADE$ 是等边三角形.

 $\triangle DBF\cong \triangle DBE$, $\angle CDF=60^{\circ}-\angle BDF=60^{\circ}-\angle BDE=\angle BDA$, 故 AF // BC (可作垂线证明), A,B,C,F 四点共圆, $\angle CBF=\angle CAF$,

6.7 Triangle by Three Sides

Construct a triangle with the side AB and the two other sides equal to the given segments.

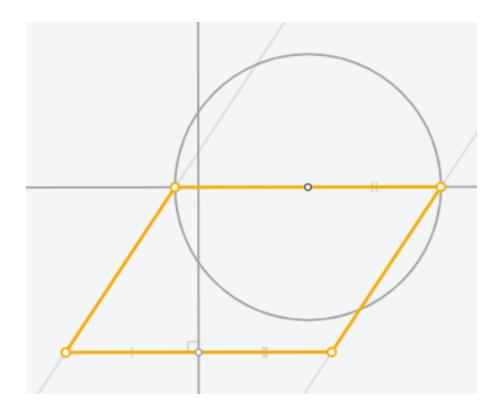
4L 12E



6.8 Parallelogram

Construct a parallelogram with the given side and the midpoint of the opposite side in the given point.

5L



8E 🌙

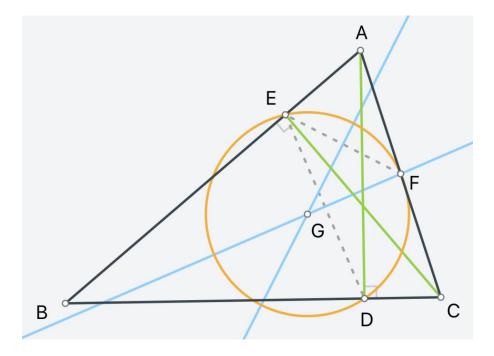
image-20220802211540855

注 利用 4.1 和 3.6.

6.9 Nine Point Circle ☆

Construct a circle that passes through the midpoints of sides of the given acute triangle. 求作 $\triangle ABC$ 的九点圆,

5L



作法

- 1. 作 $AD \perp BC$ 交 BC 于点 D;
- 2.作 $CE \perp AB$ 交AB于点E;
- 3. 作 DE 的中垂线, 交 AC 于点 F;
- 4. 作 EF 的中垂线, 交 DE 的中垂线于点 G;
- 5. 以G为圆心,GF为半径作圆.

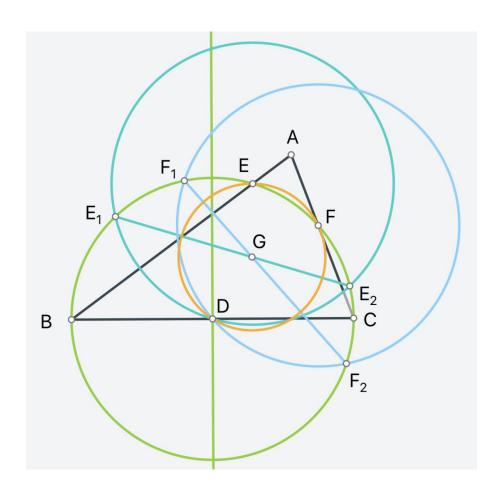
则圆 G 即为所求九点圆. 作完.

证明

A, C, D, E 四点共圆, 且 AC 为直径, 故 F 为 AC 中点.

由九点圆性质知圆 G 即为九点圆. 证毕.

9E



作法

- 1. 作 BC 的中垂线, 交 BC 于点 D; (3E)
- 2. 以 D 为圆心, DB 为半径作圆, 交 AB 于点 E, 交 AC 于点 F; (1E)
- 3. 作 DE 的中垂线, 交 DF 的中垂线于点 G; (4E)
- 4. 以 G 为圆心, GD 为半径作圆. (1E)

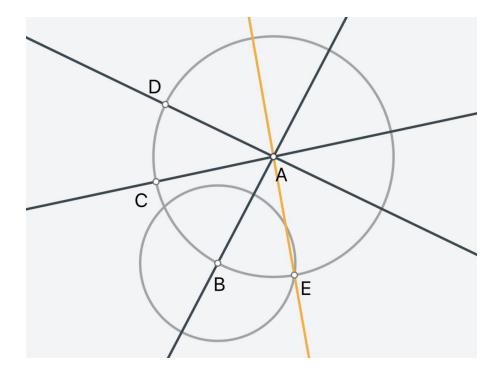
则圆 G 即为所求九点圆. 作完.

证明 由九点圆性质即得. 证毕.

Symmetry of Four Lines 6.10

Three lines are intersected in a point. Construct a line so that the set of all 4 lines is mirror symmetric.

3L 🌙



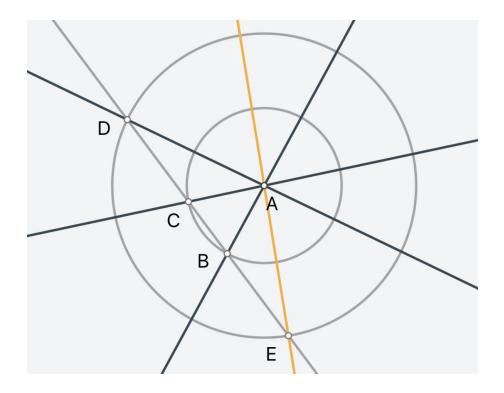
作法

- 1. 以 A 为圆心, 任意长为半径作圆, 与三条已知线分别交于点 B,C,D;
- 2. 以 B 为圆心, CD 为半径作圆, 交圆 A 于点 E;
- 3. 连接 *AE*.

则 AE 即为所求作直线. 作完.

证明 $\angle BAE = \angle CAD$, 故 $\angle BAC$ 的角平分线即为对称轴. 证毕.

4E 🌙



- 1. 以 A 为圆心, 任意长为半径作圆, 与其中两条已知线分别交于点 B,C;
- 2. 连接 BC, 交另一条已知线于点 D;
- 3. 以 A 为圆心, AD 为半径作圆, 交 BC 于点 E;
- 4. 连接 *AE*.

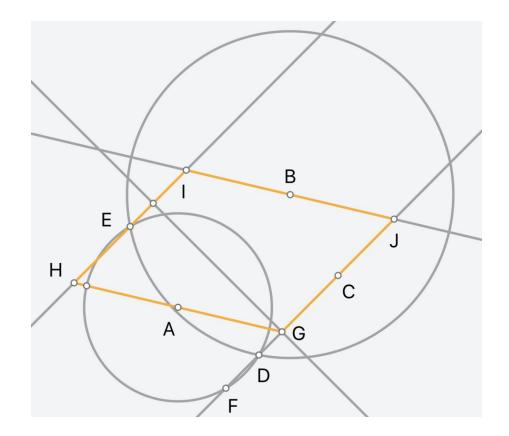
则 AE 即为所求作直线. 作完.

证明 $\angle BAE = \angle CAD$, 故 $\angle BAC$ 的角平分线即为对称轴. 证毕.

6.11 Parallelogram by Three Midpoints 🖈

Construct a parallelogram given three of the midpoints.

7L 🏡



- 1. 以 A 为圆心, BC 为半径作圆;
- 2. 以 B 为圆心, AC 为半径作圆, 交圆 A 于点 D 与 E;
- 3. 连接 CD, 交圆 A 于点 F;
- 4. 作 CF 的中垂线 l_1 ;
- 5. 过 E 作 l_1 的垂线 l_2 ;
- 6. 连接 GA, 交 l_2 于点 H;
- 7.过B作IJ // GH,交HE和CD于点I与J.

则四边形 GHIJ 即为所求作平行四边形. 作完.

证明

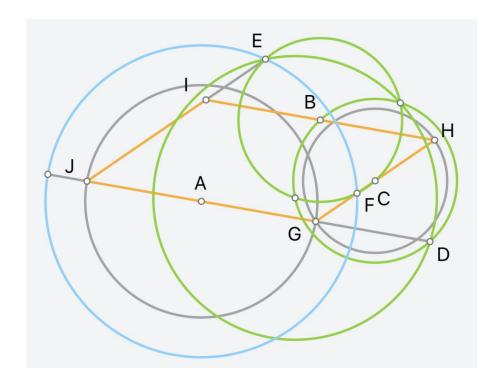
 $\triangle ABC \cong \triangle BAD$, 四边形 ABCD 是等腰梯形, 四边形 ABCF 是平行四边形.

故
$$CG$$
 // AB 且 $CG = \frac{1}{2}AB$.

 $CG \perp IG$, $IG \perp IH$, 故 IH // CG.

故四边形 GHIJ 即为所求作平行四边形. 证毕.

10E 🌟



- 1. 以 B 为圆心, BC 为半径作圆.
- 2. 以 C 为圆心, CB 为半径作圆.
- 3. 以圆 B 与圆 C 一交点为圆心, 两交点长为半径作圆, 交圆 C 于点 D, 交圆 B 于点 E;
- 4. 连接 *AD*;
- 5. 以 A 为圆心, AE 为半径作圆, 交圆 B 于点 F; (妙手)
- 6. 连接 CF, 交 AD 于点 G;
- 7. 以 C 为圆心, CG 为半径作圆, 交 CF 于点 H;
- 8. 以 A 为圆心, AG 为半径作圆, 交 AD 于点 J;
- 9. 连接 HB;
- 10. 连接 *JE*, 交 *HB* 于点 *I*.

则四边形 GHIJ 记为所求平行四边形. 作完.

证明

 $\overrightarrow{EB} = \overrightarrow{BC} = \overrightarrow{CD}$, 故 AD 即为所求四边形一边所在直线.

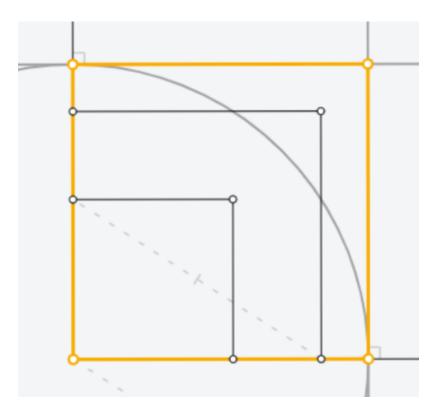
 $AB \perp EF$, $EF \perp FC$, 故 $AB \perp FC$.

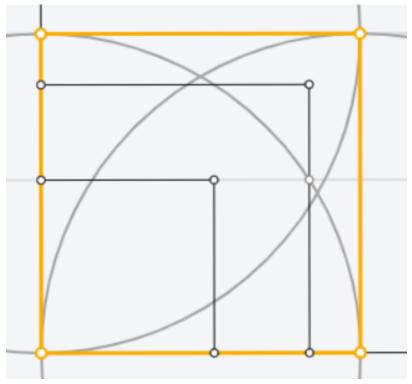
故四边形 GHIJ 即为所求作平行四边形. 证毕.

7.1 Sum of Areas of Squares

Construct a square whose area equals the sum of the areas of the two given squares and all three have the common angle.

3L

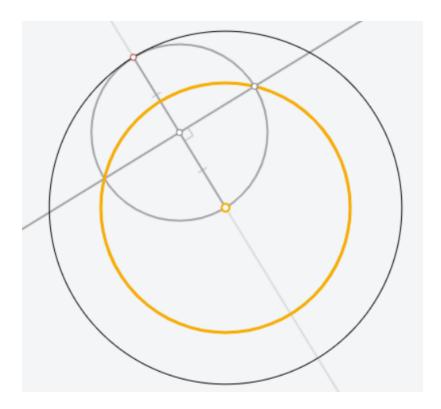




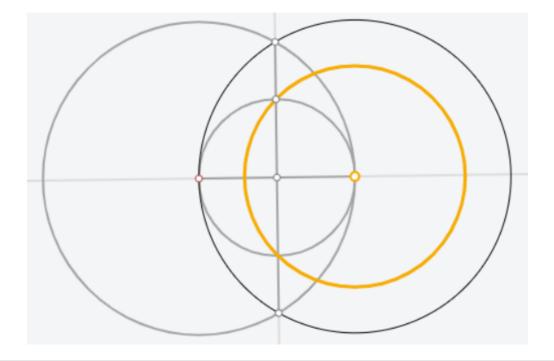
7.2 Annulus

Construct a circle that is concentric with the given one and divides it into 2 parts of equal area.

4L



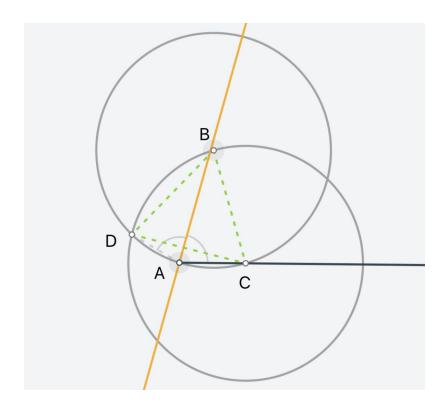
5E



7.3 Angle of 75° \checkmark

Construct an angle of 75° with the given side.

3L 🌙



作法

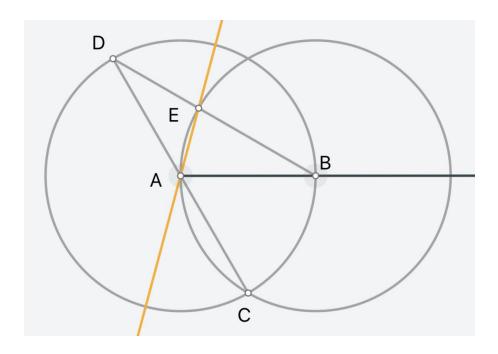
- 1. 以射线外一点 B 为圆心, BA 为半径作圆, 交射线于点 C;
- 2. 以 C 为圆心, CB 为半径作圆, 交圆 B 于一点 D;
- 3. 作 $\angle DAC$ 的 (外) 角平分线, 即为所求作直线.

作完.

证明

 $\triangle BCD$ 是等边三角形, $\angle DAC=180^{\circ}-\frac{1}{2}\angle DBC=150^{\circ}$, 故其角平分线即为所求直线. 证毕.

5E 🌙



证明

$$\angle ABD = 30^{\circ}, \ \angle AEB = \frac{1}{2}(180^{\circ} - \angle ABD) = 75^{\circ}.$$

7.4 Line Equidistant from Three Points

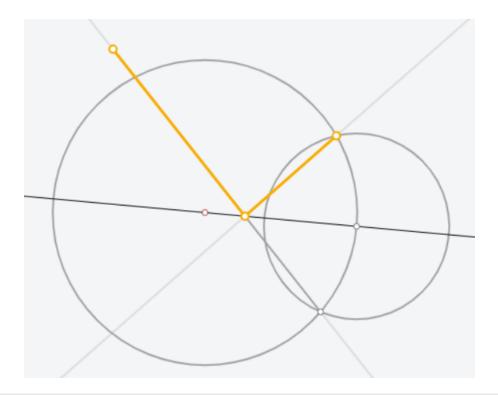
Construct a line that is at equal distance from the given three points.

3L 7E

7.5 Heron's Problem

Construct a point C on the given line and segments AC and BC such that the sum of their length is minimal.

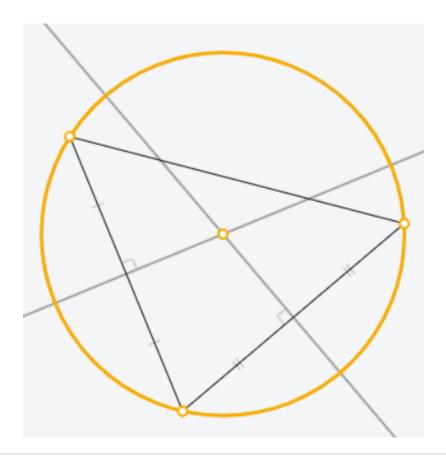
4L 4E



7.6 Circumscribed Circle

Construct the circumcircle of the triangle.

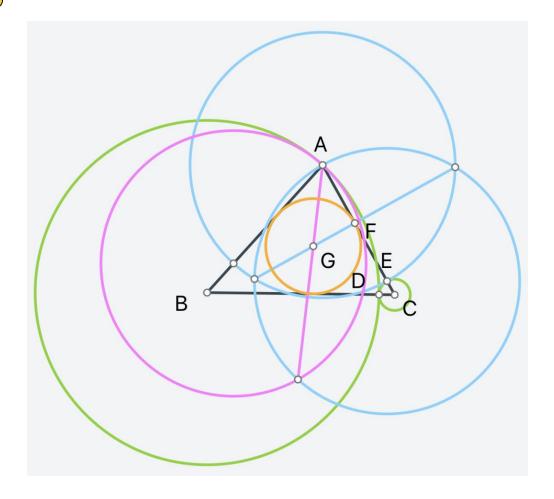
3L 7E



7.7 Inscribed Circle 🕗

Construct the incircle of the triangle.

8E 🌙



作法

- 1. 以 B 为圆心, BA 为半径作圆, 交 BC 于点 D;
- 2. 以 C 为圆心, CD 为半径作圆, 交 AC 于点 E;
- 3. 作 AE 的中垂线, 交 AC 于点 F; (3E)
- 4. 利用已有圆作 $\angle A$ 的角平分线, 交 AE 的中垂线于点 G; (2E)
- 5. 以G为圆心,GF为半径作圆.作完.

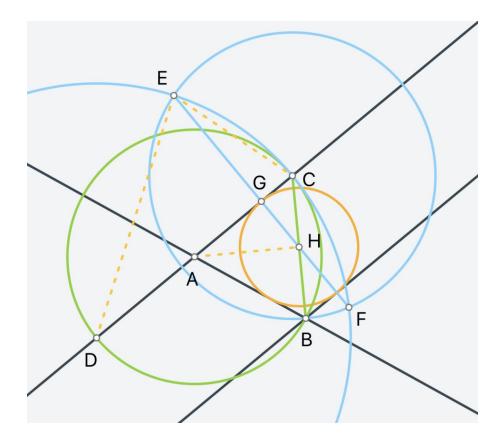
证明

$$CE=CD=a-c,\,AF=rac{-a+b+c}{2}$$
. 故圆 G 即为所求圆. 证毕.

7.8 Circle Tangent to Three Lines ☆

Construct a circle that is tangent to the three given lines. Two of the lines are parallel.

6E ☆



- 1. 以 A 为圆心, AB 为半径作圆, 交 A 所在的一条平行线于点 C 与 D;
- 2. 连接 BC;
- 3. 以 C 为圆心, CB 为半径作圆;
- 4. 以 D 为圆心, DC 为半径作圆, 交圆 C 于点 E 与 F;
- 5. 连接 EF, 交 AC 于点 G, 交 BC 于点 H;
- 6. 以 H 为圆心, HG 为半径作圆. 作完.

证明

不妨令 AB = 1, $\angle BAH = \theta$.

 $\angle ABC = \angle ACB$, 故 BC 是图中黑线的角平分线.

 $EF \perp AC$, AH 平分 $\angle BAC$, 故只需证 $AG = AH\cos\theta = AB\cos^2\theta$.

$$BC = 2BH = 2\sin\theta$$

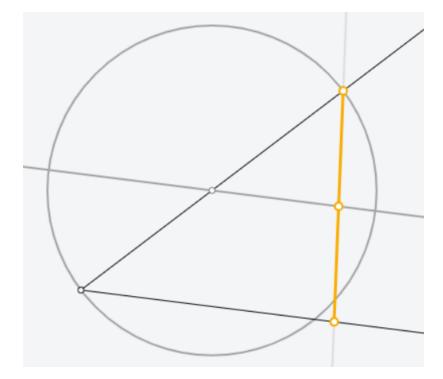
 $EG^2 = DE^2 - DG^2 = CE^2 - CG^2$
 $= 2^2 - (1 + AG)^2 = (2\sin\theta)^2 - (1 - AG)^2$
 $\Rightarrow AG = \cos^2\theta$.

证毕.

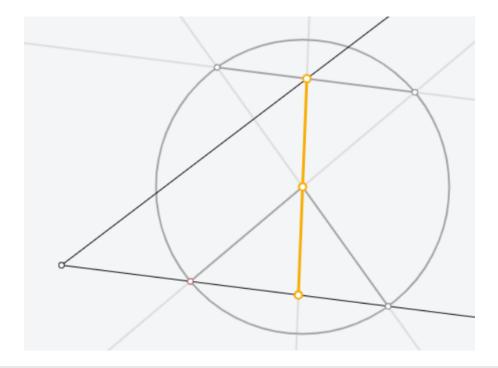
7.9 Segment by Midpoint 🌙

Construct a segment with the ends on the sides of the angle such that the given point is its midpoint.

3L 🌙



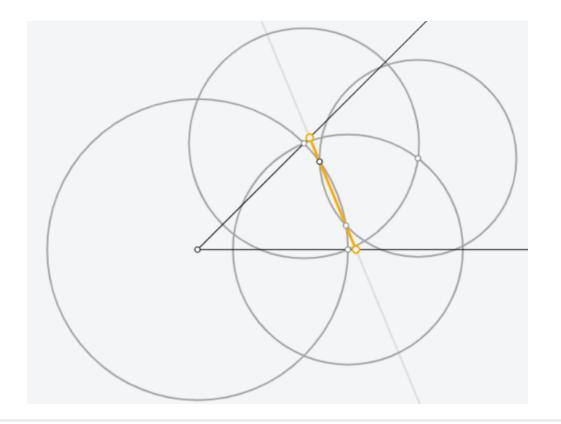
5E



7.10 Angle Isosceles 🌙

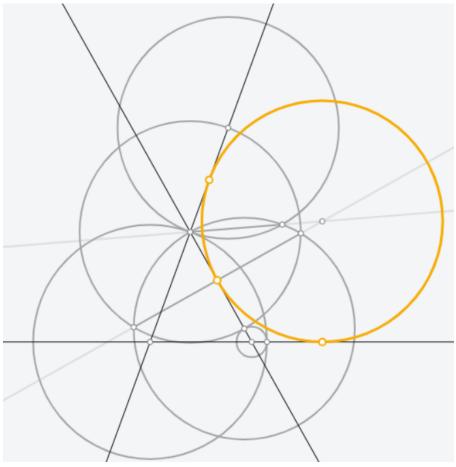
Construct a line through the given point such that it cuts off equal segments on the sides of the angle.

5E 🌙



7.11 Excircle

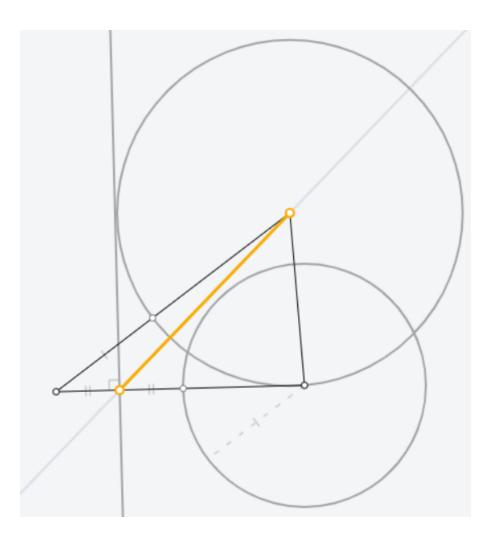
Construct an excircle of the triangle formed by the three given lines.

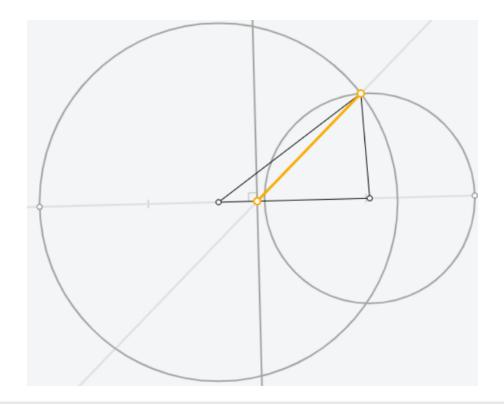


8.1 Perimeter Bisector

Construct a straight line through a vertex of the triangle that divides its perimeter in half.

4L

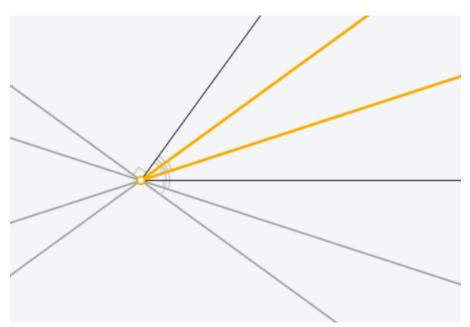




8.2 Angle 54° Trisection \red

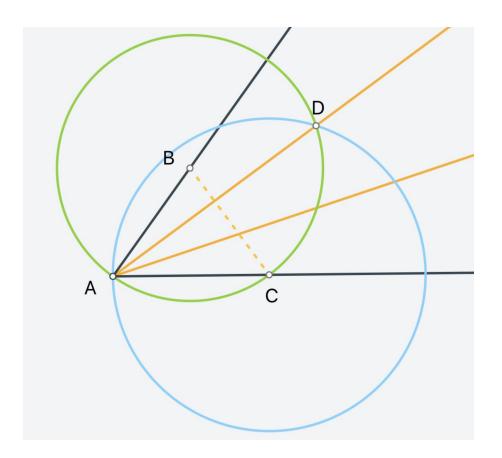
Construct two rays that divide the given angle of 54° into three equal parts.

4L method 1



注 作一条垂线后作三次角平分线.

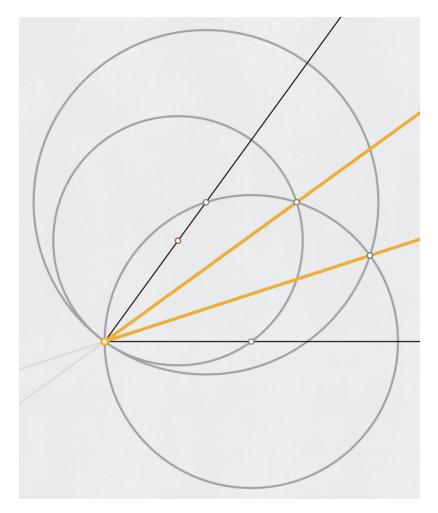
4L method 2 🌙



证明

$$\angle BCD = \angle ACB = \angle BAC = 54^{\circ},$$

$$\angle DAE = rac{1}{2}(180^{\circ} - \angle BCD - \angle ACB) = 36^{\circ}.$$

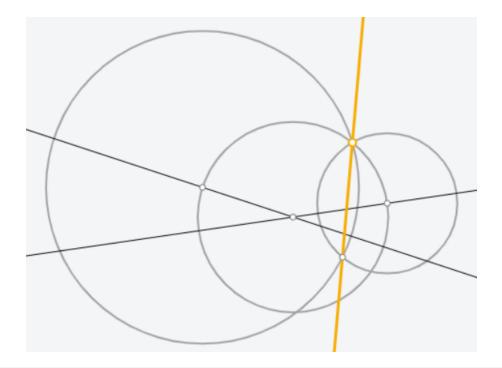


证明 同 8.2.4L method 2.

8.3 Interior Angles 🌙

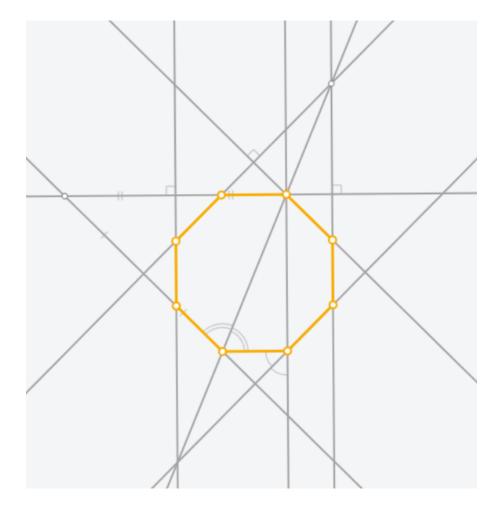
Construct a line through the point that crosses the two lines so that the interior angles are equal.

4E 🌙

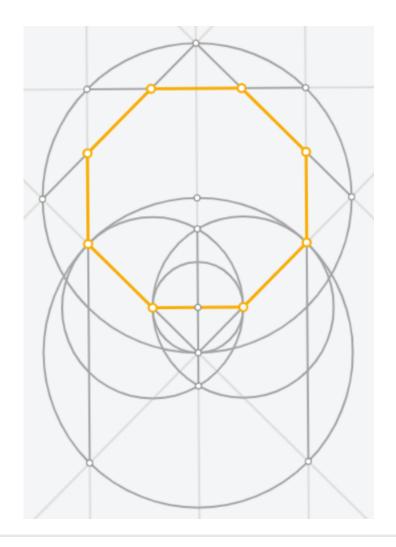


8.4 Regular Octagon 🌙

Construct a regular octagon with the given side.



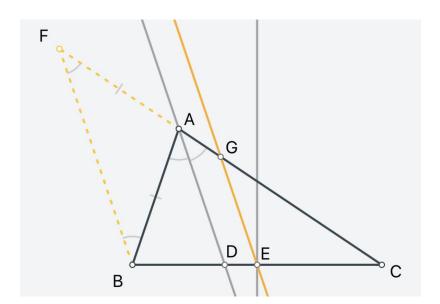
13E 🌙



8.5 Triangle Cleaver 🗙

Construct a line through the midpoint of a side of the triangle that bisects its perimeter.

3L 🌙



作法

1. 作 $\angle A$ 的角平分线, 交 BC 于点 D;

- 2. 作 BC 的中垂线, 交 BC 于点 E;
- 3. 作 EG // AD 交 AC 于点 G. 作完.

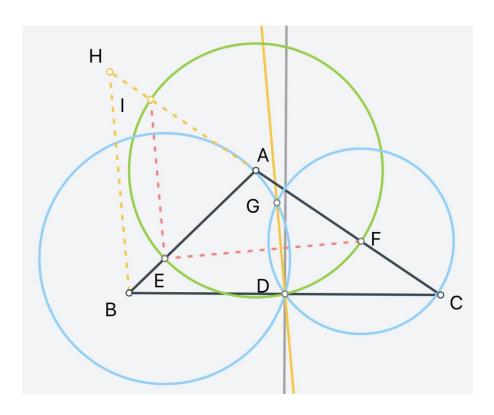
延长 CA 至点 F, 使得 AF = AB, 则

$$\angle AFB = \angle FBA = \frac{1}{2} \angle BAC = \angle CAD$$
,

故 FB // AD // GE, BA + AG = FA + AG = GC.

即EG记为所求线段.证毕.

7E



作法

- 1. 作 BC 的中垂线, 交 BC 于点 D; (3E)
- 2. 以 A 为圆心, AD 为半径作圆, 交 AB 于点 E, 交 AC 于点 F;
- 3. 以 E 为圆心, ED 为半径作圆;
- 4. 以 F 为圆心, FD 为半径作圆, 交圆 E 于点 D 与 G;
- 5. 连接 DG. 作完.

证明

延长 CA 至点 I 与 H, 使得 AI = AE, AH = AB,

则 HB // IE, $IE \perp EF$,

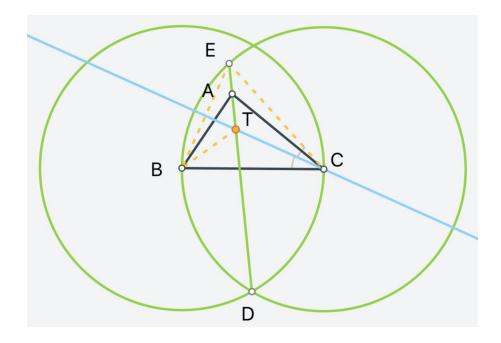
而 $GD \perp EF$, 故 GD // HB.

由 8.5.3E 知: DG 记为所求线. 证毕.

8.6 Torricelli Point 🏠

Construct a point from which each side subtends an angle of 120° or 60°.

4L



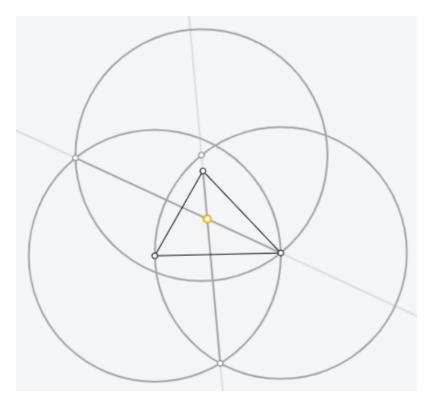
作法

- 1. 以 B 为圆心, BC 为半径作圆;
- 3. 连接 DA 并延长, 交圆 C 于点 E;
- 4. 作 $\angle BCE$ 的角平分线, 交 DE 于点 T.

证明

$$CT \perp BE, \ \angle EBT = \angle BED = rac{1}{2} \angle BCD = 30^{\circ}$$
,故 $\angle BTC = \angle ETC = 120^{\circ}$.

证毕.

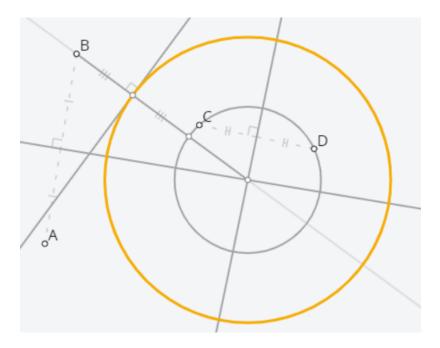


证明 参考 8.6.4L.

8.7 Circle Equidistant from Four Points

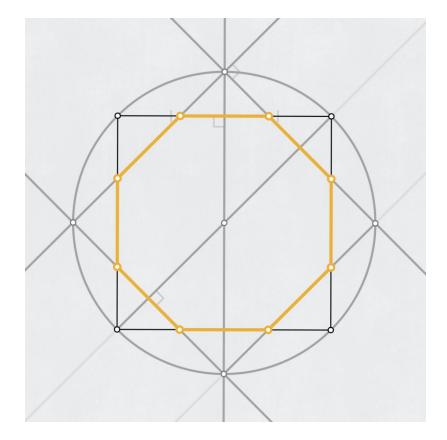
Construct a circle equidistant from the given four points so that exactly two of them lie inside the circle.

6L 12E

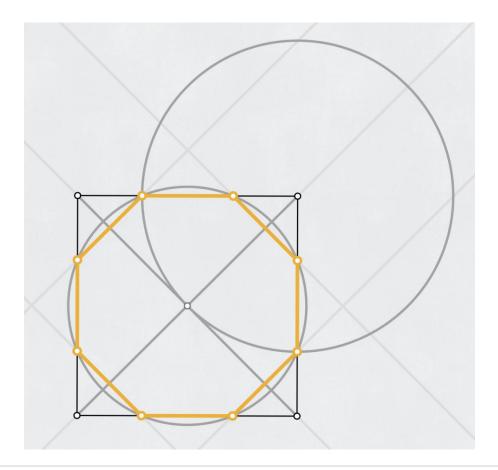


8.8 Octagon from Square

Construct a regular octagon by cutting the corners of the given square.



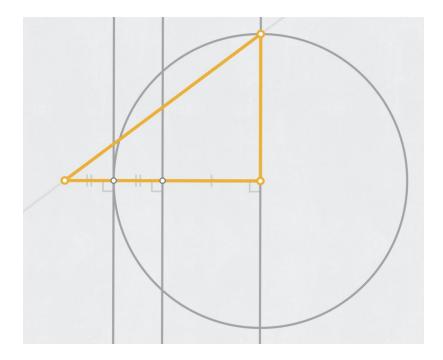
8E



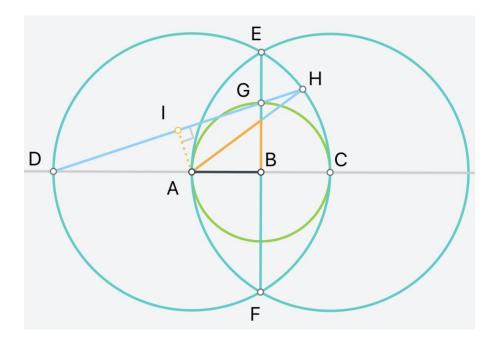
8.9 Egyptian Triangle by Side of Length $4\,$

Construct a triangle with sides whose lengths are equal to 3, 4 and 5. The side with length 4 is given.

5L



7E 🌙



- 1. 作直线 AB;
- 2. 以 B 为圆心, BA 为半径作圆, 交 AB 于点 C;
- 3. 以 A 为圆心, AC 为半径作圆, 交 AB 于点 D;
- 4. 以 C 为圆心, CA 为半径作圆, 交圆 A 于点 E 与 F;
- 5. 连接 EF, 交圆 B 于点 G;
- 6. 连接 DG, 交圆 A 于点 H;
- 7. 连接 AH. 作完.

作 $AI \perp DH$ 交 DH 于点 I, 则

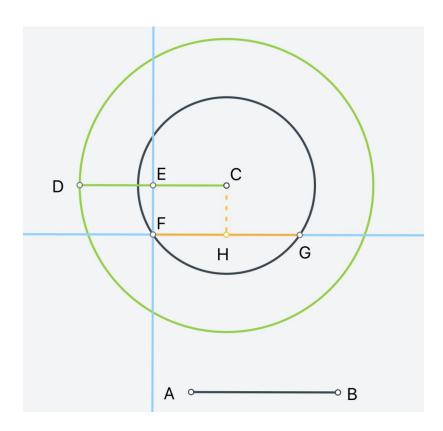
$$\tan \angle IAD = \cot \angle GDB = 3$$
, $\tan \angle DAH = \tan 2\angle IAD = -\frac{3}{4}$.

故图中黑色与橙色线段围成的三角形记为所求三角形. 证毕.

8.10 Chord Parallel to Segment 🜙

Construct a chord of the given circle that is parallel to the given segment and congruent to it.

4L

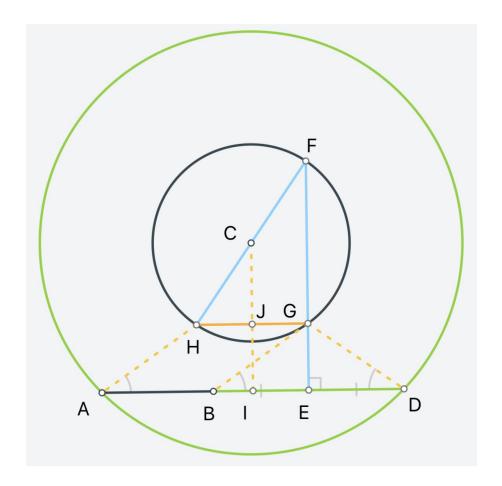


作法

- 1. 以 C 为圆心, AB 为半径作圆 C_2 ;
- 2. 作 CD // AB, 交圆 C_2 于点 D;
- 3. 作 CD 的中垂线, 交 CD 于点 E, 交已知圆于点 F;
- 4. 作 FG // AB 交已知圆于点 G. 作完.

证明

$$FG = 2FH = 2CE = CD = AB$$
. 证毕.



作法

- 1. 以 C 为圆心, CA 为半径作圆 C_2 ;
- 2. 延长 AB, 交圆 C_2 于点 D;
- 3. 作 BD 的中垂线, 交 BD 于点 E, 交已知圆于点 F 与 G;
- 4. 连接 FC 并延长, 交已知圆于点 H;
- 5. 连接 GH. 作完.

证明

作 $CI \perp AD$, 交AD 于点I, 交HG 于点J.

 $AB \perp EF$, $HG \perp EF$, 故 AB // HG.

故 HJ = JG, AI = ID, $\angle HAB = \angle GDB = \angle GBD$,

故 AH // BG, 四边形 ABGH 是平行四边形,

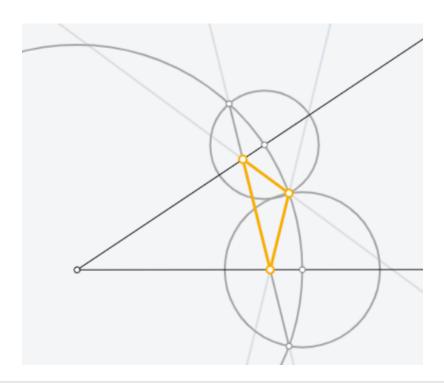
故AB = HG.证毕.

$9.\iota$

9.1 Minimum Perimeter - 1

Construct a triangle whose perimeter is the minimum possible whose vertices lie on the two sides of the angle and the third vertex is in the point A.

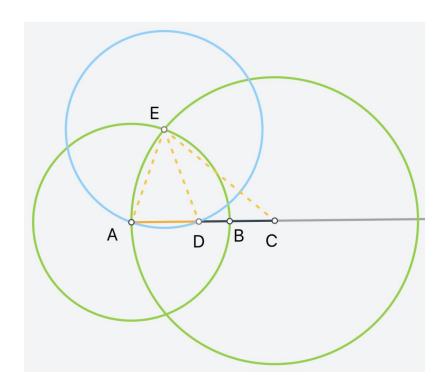
6L 6E



9.2 Third Proportional

Construct a point D on the ray such that the segment AD is the third proportional to the given line segments.

3L 3E



作法

- 1. 以 A 为圆心, AB 为半径作圆;
- 2. 以 C 为圆心, CE 为半径作圆, 交圆 A 于点 E;
- 3. 以 E 为圆心, EA 为半径作圆, 交 AB 于点 D. 作完.

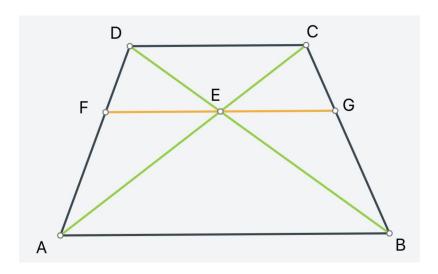
证明

$$\triangle AEC \backsim \triangle ADE, \ \frac{AC}{AE} = \frac{AE}{AD} \Rightarrow AC \cdot AD = AB^2.$$
证毕.

9.3 Harmonic mean of Trapezoid Bases 🥒

Join the legs of the trapezoid with a segment that is parallel to the bases and whose length is equal to the harmonic mean of their length.

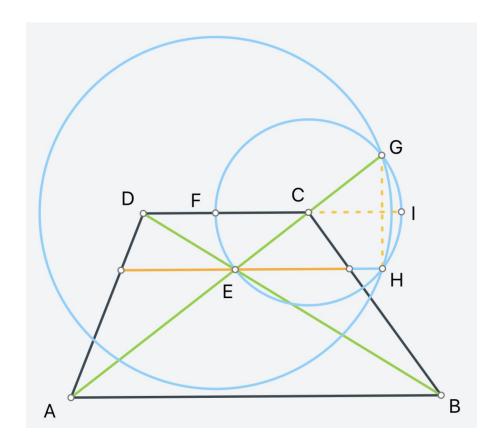
3L 🌙



- 1. 连接 *AC*;
- 2. 连接 BD, 交 AC 于点 E;
- 3. 过 E 作 FG // AB, 交 AD 于点 F, 交 BC 于点 G. 作完.

$$FG = 2EG = 2 \cdot rac{EB}{DE + EB} \cdot CD = rac{2AB \cdot CD}{AB + CD}$$
. 证毕.

5E 🌙



作法

- 1. 连接 *AC*;
- 2. 连接 BD, 交 AC 于点 E;
- 3. 以 C 为圆心, CE 为半径作圆, 交 CD 于点 F, 交 AC 延长线于点 G;
- 4. 以 F 为圆心, FG 为半径作圆, 交圆 C 于点 H;
- 5. 作直线 EH. 作完.

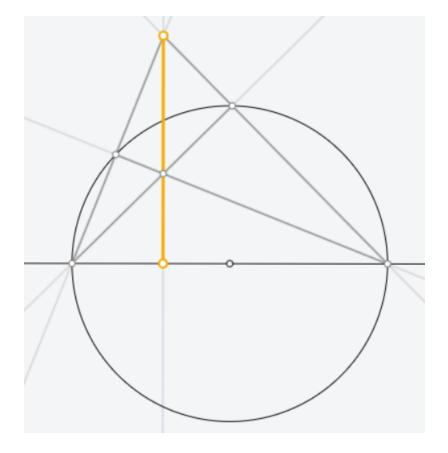
证明

 $CI \perp GH, \ EH \perp GH \Rightarrow EH \ // \ CD$, 由 9.3.3L 知即为所求. 证毕.

9.4 Drop a Perpendicular*

Drop a perpendicular from the point to the line passing through the center of the circle using only a straightedge.

5L 5E

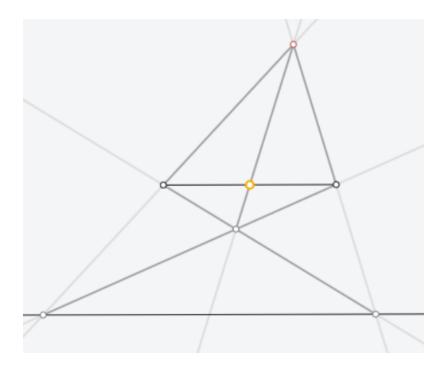


由三角形高线共点即得. 证毕.

9.5 Midpoint*

Construct the midpoint of the segment using only a straightedge. To help you, a line parallel to the segment is given.

5L 5E

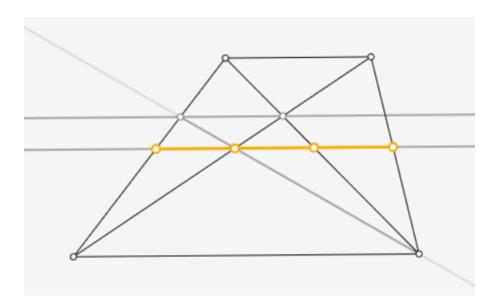


证明 见 3.6.

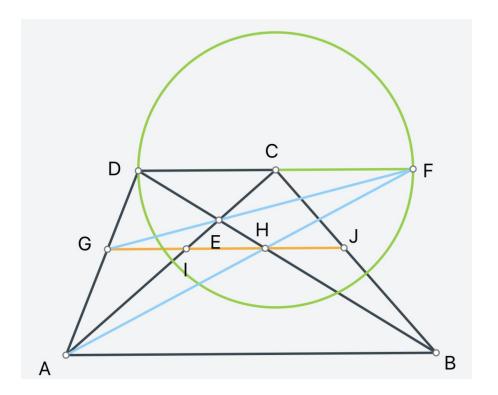
9.6 Trisection by Trapezoid Diagonals 🖈

Construct a line segment that is parallel to the bases of the trapezoid and is divided to three equal parts by its diagonals.

3L



5E ☆



作法

- 1. 以 C 为圆心, CD 为圆心作圆;
- 2. 延长 DC, 交圆 C 于点 F;
- 3. 连接 FE 并延长, 交 AD 于点 G;
- 4. 连接 AF, 交 BD 于点 H;
- 5. 连接 GH. 作完.

证明

设GH交AC于点I,交BC于点J.

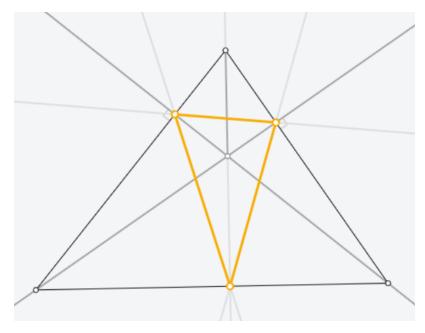
由塞瓦定理知:
$$\frac{AH}{HF} \cdot \frac{HC}{CD} \cdot \frac{DG}{GA} = 1 \Rightarrow \frac{AH}{HF} = \frac{AG}{GD} \Rightarrow GH // CD$$
, 故 $\frac{GI}{DC} = \frac{AI}{IC} = \frac{IH}{CF} = \frac{AH}{HF} = \frac{BH}{HD} = \frac{HJ}{CD} \Rightarrow GI = IH = HJ$.

证毕.

9.7 Minimum Perimeter - 2 太

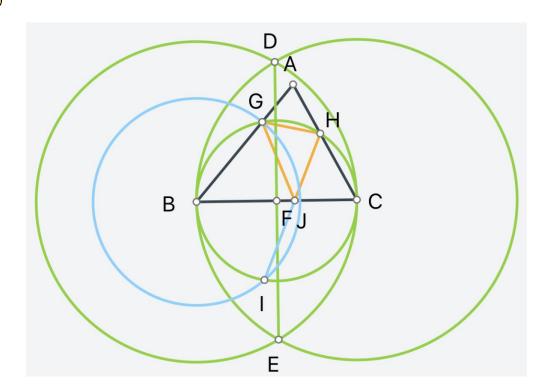
Inscribe a triangle into the given one whose perimeter is the minimum possible.

6L



注 即施瓦茨三角形问题. 周长最小的内接三角形即垂足三角形.

8E 🌙



- 1. 以 B 为圆心, BC 为半径作圆;
- 2. 以 C 为圆心, CB 为半径作圆, 交圆 B 于点 D 与 E;
- 3. 连接 DE, 交 BC 于点 F;
- 4. 以 F 为圆心, FB 为半径作圆, 交 AB 于点 G, 交 AC 于点 H;
- 5. 连接 *GH*;
- 6. 以 B 为圆心, BG 为半径作圆, 交圆 F 于点 I;

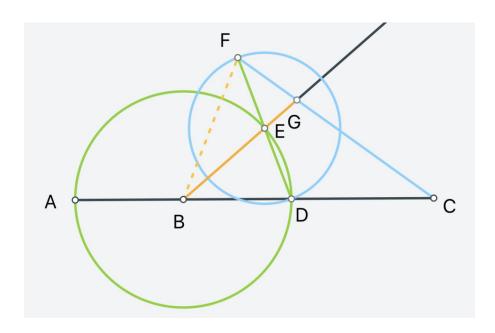
- 7. 连接 IH, 交 BC 于点 J;
- 8. 连接 GJ. 作完.

点 G 与 H 为垂足, 且 GJ + JH 最短, 故记为所求三角形. 证毕.

9.8 Harmonic Mean of Segments 🖈

Construct a point on the given ray to get a segment with length equal to the harmonic mean of the two adjacent segments.

4L 4E



作法

- 1. 以 B 为圆心, BA 为半径作圆, 交 BC 于点 D, 交已知射线于点 E;
- 2. 以 E 为圆心, ED 为半径作圆;
- 3. 连接 DE 并延长, 交圆 E 于点 F;
- 4. 连接 CF, 交已知射线于点 G. 作完.

证明

令
$$AB = a$$
, $BC = b$,则

$$\overrightarrow{BE} = \frac{1}{2} \left(\overrightarrow{BD} + \overrightarrow{BF} \right) = \frac{a}{2b} \overrightarrow{BC} + \frac{1}{2} \overrightarrow{BF},$$

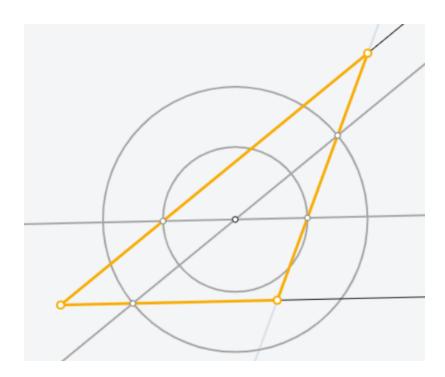
令
$$\overrightarrow{BG}=\overrightarrow{kBE}$$
, 则由等和线知: $\left(\frac{a}{2b}+\frac{1}{2}\right)k=1$,

故
$$BG=ka=rac{2ab}{a+b}$$
.证毕.

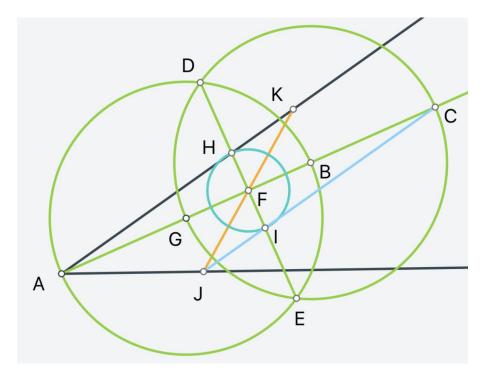
9.9 Triangle by Anlge and Centroid 🥒

Construct a segment connecting the sides of the angle to get a triangle whose centroid is in the point O.

5L 🌙



7E 🌙



设两已知射线为 l_1, l_2 .

- 1. 作射线 *AG*;
- 2. 以 G 为圆心, GA 为半径作圆, 交 AG 于点 B;
- 3. 以 B 为圆心, BG 为半径作圆, 交 AG 于点 C, 交圆 G 于点 D 与 E;
- 4. 连接 DE, 交 AB 于点 F, 交 l_1 于点 H;
- 5. 以 F 为圆心, FH 为半径作圆, 交 DE 于点 I;

6. 连接 CI 并延长, 交 l_2 于点 J;

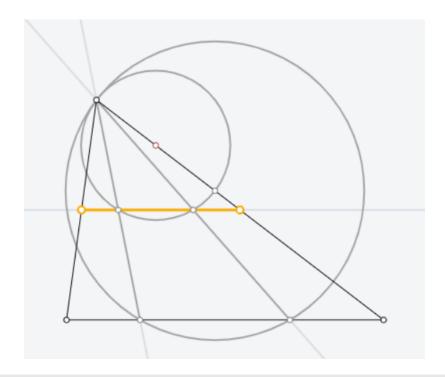
7. 连接 JF 并延长, 交 l_1 于点 K. 作完.

证明

AG=2GF,故只需证明 JF=FK. $\triangle AFH\cong\triangle CFI\quad\Rightarrow\quad\triangle AFK\cong\triangle CFJ\quad\Rightarrow\quad JF=FK.$ 证毕.

9.10 Triangle Mid-Segment 🜙

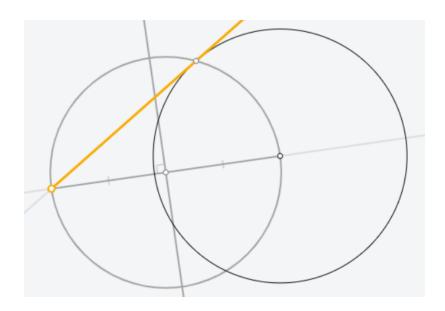
Construct a mid-segment of the given acute triangle.



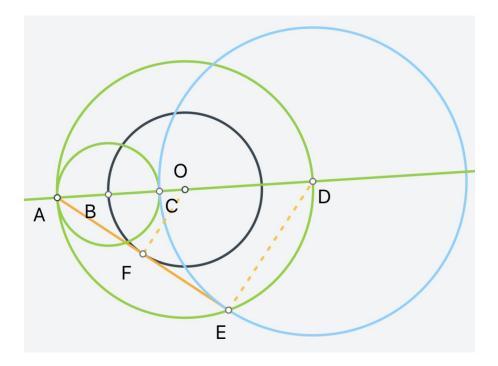
10.1 Tangent of Circle 🥒

Construct a tangent to the circle from the external point.

4L



5E 🌙



- 1. 作直线 AO, 交已知圆于点 B;
- 2. 以 B 为圆心, BA 为半径作圆, 交 AO 于点 C;
- 3. 以 O 为圆心, OA 为半径作圆, 交 AO 于点 D;
- 4. 以 D 为圆心, DC 为半径作圆, 交圆 OA 于点 E;

5. 连接 AE. 作完.

证明

作 $OF \perp AE$ 交 AE 于点 F.

$$AB = OA - OB$$
,

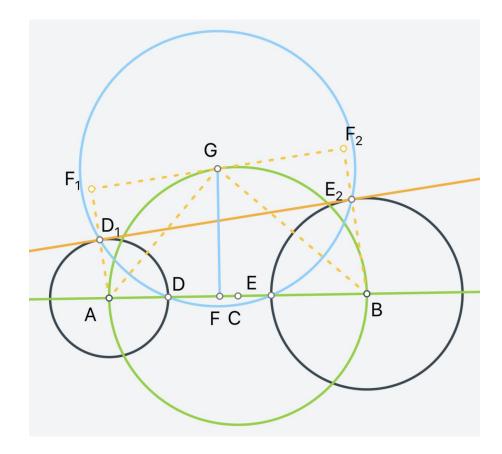
$$DC = 2OA - 2AB = 2OB$$

$$CF = \frac{1}{2}DE = \frac{1}{2}DC = OB$$
,

故 F 在圆 OB 上, 即 AF 为所求切线. 证毕.

10.2 Outer Tangent

Construct an outer tangent between two circles.



- 1. 连接 AB, 交圆 A 于点 D, 交圆 B 于点 E;
- 2. 作 AB 的中点 C;
- 3. 以 C 为圆心, CA 为半径作圆.
- 4. 作 DE 的中垂线, 交圆 C 于点 G;
- 5. 以 G 为圆心, GD 为半径作圆, 交圆 A 于点 D_1 , 交圆 B 于点 E_2 ;
- 6. 连接 D_1E_2 . 作完.

连接 AD_1 , AG, BG, BE_2 ;

作 $GF_1 \perp AD_1$, 交 AD_1 于点 F_1 ;

作 $GF_2 \perp BE_2$, 交 BE_2 于点 F_2 .

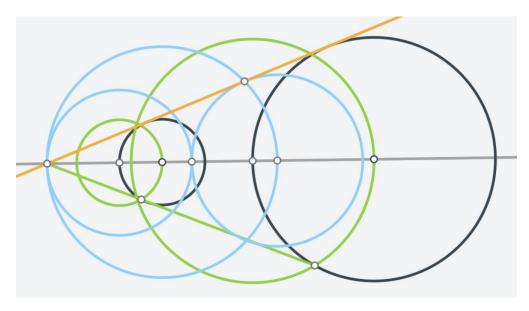
 $\angle D_1AG = \angle DAG$, $\angle E_2BG = \angle EBG$,

 $\angle D_1AD + \angle EBE_2 = 2\left(\angle GAB + \angle GBA\right) = 180^{\circ}$,

故 $AF_1 // BF_2$, 点 F_1, G, F_2 三点共线.

 $F_1D_1=DF=FE=F_2E_2$, 故四边形 $D_1F_1F_2D_2$ 是矩形,

 $D_1E_2 \perp AD_1, D_1E_2 \perp BE_2$, 故 D_1E_2 即为外公切线. 证毕.

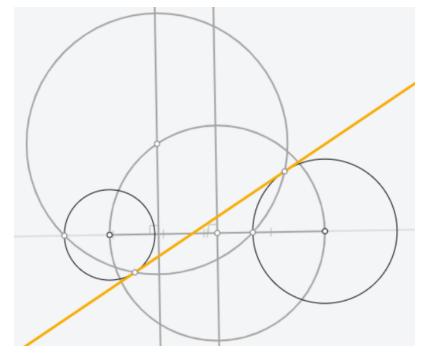


注 先利用等边三角形作出外位似中心 (绿色), 再作任意一个圆的切线 (蓝色).

10.3 Inner Tangent

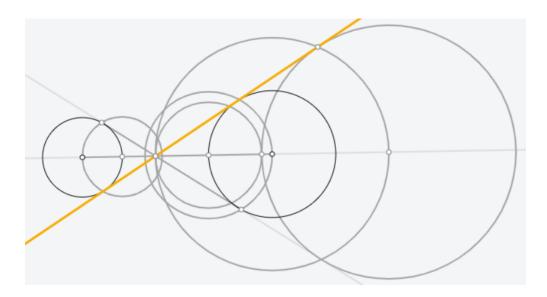
Construct an inner tangent between two circles.

6L



注 同 10.2.6L, 不过中垂线的端点不同.

8E



注 同 10.2.8E, 不过先作出内位似中心.

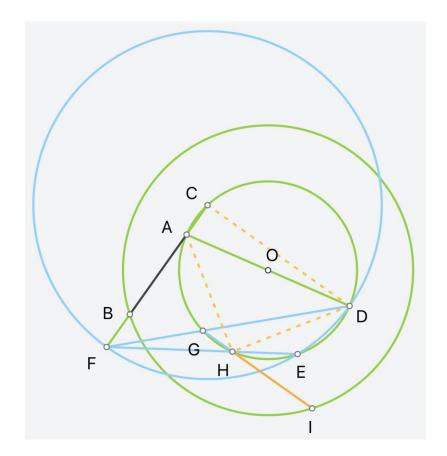
Rotation of 90° 10.4

Rotate the line segment 90° counterclockwise about the given point.

5L



9E 🏡



- 1. 作直线 AB;
- 2. 作圆 OA, 交 AB 于点 C;
- 3. 作圆 *OB*;
- 4. 连接 AO 并延长, 交圆 OA 于点 D 与 E ;

- 5. 作圆 CD, 交 AB 于点 F;
- 6. 连接 FD, 交圆 OA 于点 G;
- 7. 连接 FE, 交圆 OA 于点 H;
- 8. 连接 GH, 交圆 OB 于点 I. 作完.

在圆 OA 中, $\angle ACD = 90^{\circ}$,

在圆 CD 中, $\triangle CFD$ 是等腰直角三角形.

$$\angle DEF = 180^{\circ} - \frac{1}{2} \angle DCF = 135^{\circ}$$
 ,

$$\angle DAH = 180^{\circ} - \angle DEF = 45^{\circ}$$
,

故 $\triangle AHD$ 是等腰直角三角形, $OH \perp AD$.

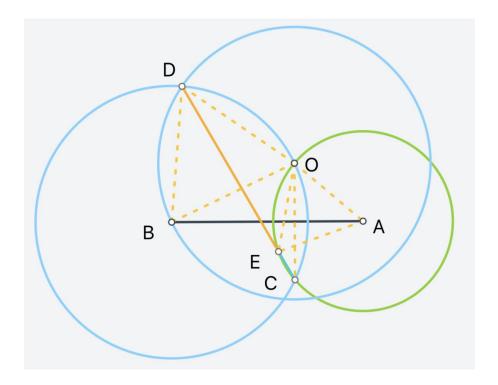
$$\angle DGH = \angle DAH = 45^{\circ}$$
,故 $IG \perp AB$.

故由 10.4.5L 知 HI = AB. 证毕.

Rotation of 60° 10.5

Rotate the line segment 60° clockwise about the given point.

4L 4E



- 1. 作圆 *AO*;
- 2. 作圆 BO, 交圆 AO 于点 C;
- 3. 作圆 OB, 交圆 BO 于点 D;

4. 连接 CD, 交圆 AO 于点 E.

则 DE 记为所求线段. 作完.

证明

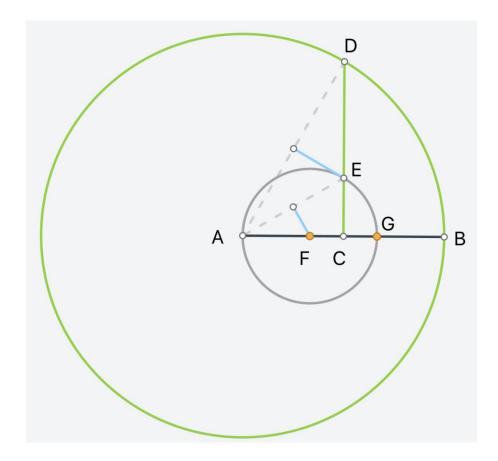
 $\triangle DBO$ 是等边三角形,故 $\angle DCO = \frac{1}{2} \angle DBO = 30^{\circ}$,

 $\angle OAE = 2 \angle DCO = 60^{\circ}$, 故 $\triangle AOE$ 是等边三角形.

故 DE 记为所求线段. 证毕.

10.6 Segment Trisection 🌙

Construct two points that divide the segment into 3 equal parts.



作法

- 1. 作圆 AB;
- 2. 作 AB 的中垂线, 交 AB 于点 C, 交圆 AB 于点 D;
- 3. 作 AD 的中垂线, 交 CD 于点 E;
- 4. 作 AE 的中垂线, 交 AB 于点 F;
- 5. 作圆 FA, 交 AB 于点 G. 作完.

证明

$$AF=rac{\sqrt{3}}{3}AE=rac{1}{3}AD=rac{1}{3}AB$$
, 故 F,G 为三等分点. 证毕.

6E 🌙

作法

- 1. 作直线 AB;
- 2. 作圆 AB, 交 AB 于点 C;
- 3. 作圆 BC, 交 AB 于点 D;
- 4. 作圆 DA, 交圆 A 于点 E;
- 5. 作圆 EA, 交 AB 于点 F;
- 6. 作圆 FA, 交 AB 于点 G. 作完.

证明

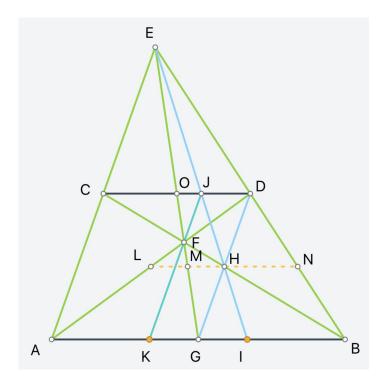
$$\triangle AEF \backsim \triangle ADE \Rightarrow AF = rac{AE}{AD} \cdot AE = rac{1}{3}AD$$
, 故 F,G 为三等分点. 证毕.

10.7 Segment Trisection*

Construct points that divide the segment into three equal parts using only a straightedge. To help you, a line parallel to the segment is given.

已知 AB // CD 且 $AB \neq CD$, 求作线段 AB 的三等分点, 且只能使用无刻度直尺与笔.

8L 8E



- 1. 连接 AC;
- 2. 连接 BD, 交 AC 于点 E;
- 3. 连接 *AD*;
- 4. 连接 BC, 交 AD 于点 F;
- 5. 连接 EF, 交 AB 于点 G, 交 CD 于点 O.
- 6. 连接 DG, 交 BC 于点 H;
- 7. 连接 EH, 交 AB 于点 I, 交 CD 于点 J;
- 8. 连接 JF, 交 AB 于点 K.

则点 K, I 即为所求三等分点. 作完.

证明

作 HL // AB, 交 AD 于点 L, 交 EG 于点 M, 交 BE 于点 N.

$$\frac{CO}{AG} = \frac{EC}{EA} = \frac{CD}{AB} = \frac{CF}{FB} = \frac{CO}{GB} \quad \Rightarrow \quad AG = GB.$$

$$\frac{LM}{AG} = \frac{FM}{FG} = \frac{MH}{GB} \quad \Rightarrow \quad LM = MH$$

$$\frac{LH}{AG} = \frac{DH}{DG} = \frac{HN}{GB} \quad \Rightarrow \quad LH = HN$$

$$\frac{MH}{GI} = \frac{EH}{EI} = \frac{HN}{IB} \quad \Rightarrow \quad IB = 2IG = \frac{1}{3}AB$$

$$\frac{CJ}{AI} = \frac{EJ}{EI} = \frac{JD}{IB} \quad \Rightarrow \quad JD = \frac{1}{3}CD$$

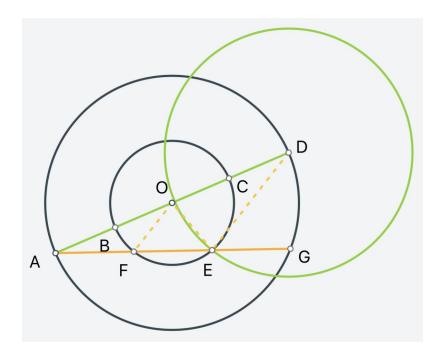
$$\frac{JD}{AK} = \frac{DF}{FA} = \frac{CD}{AB} \quad \Rightarrow \quad AK = \frac{1}{3}AB$$

故K, I为AB的三等分点.证毕.

10.8 Chord Trisection 🖈

Construct a chord of the larger circle through the given point that is divided into three equal segments by the smaller concentric circle.

3L 🏡



作法

- 1. 连接 AO, 依次交圆 OB 于点 B 与 C, 交圆 OA 于点 D;
- 2. 以 D 为圆心, BC 为半径作圆, 交圆 OB 于点 E;
- 3. 连接 AE, 交圆 OB 于点 F, 交圆 OA 于点 G. 作完.

证明

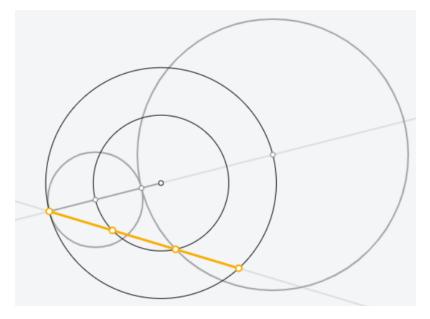
设OB = r, OA = R, AF = d,

若 AG 为所求线段,则在 $\triangle AOE$ 中有 $R^2+r^2=2r^2+2d^2$,

故只需证 $2d^2 = R^2 - r^2$.

在 $\triangle ADE$ 中, $(2R)^2+(2r)^2=2R^2+2r^2$, 即 $2d^2=R^2-r^2$.

故AG即为所求线段.证毕.

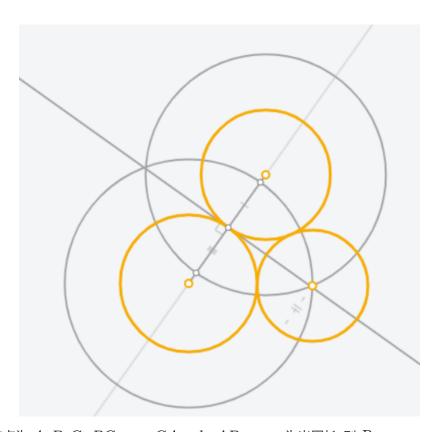


注 参考 10.1.5E 和 10.8.4E.

10.9 Three Circles - 1

Construct three circles with the given centers that are externally tangent each other.

7L



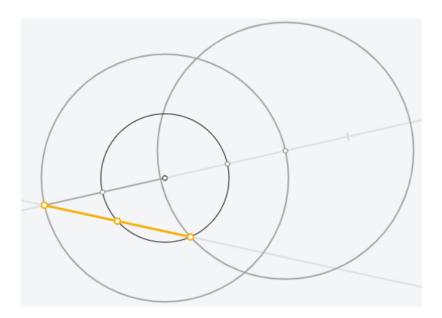
注 设三个已知点为 $A,B,C,\,BC=a,\,CA=b,\,AB=c$, p 为半周长, 则 $R_A=p-a$.



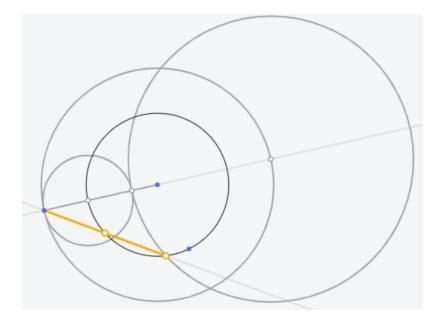
10.10 Secant Bisection

Construct a secant through the given point that is divided into two equal segments by the circle.

4L



注 见 10.8.3L.

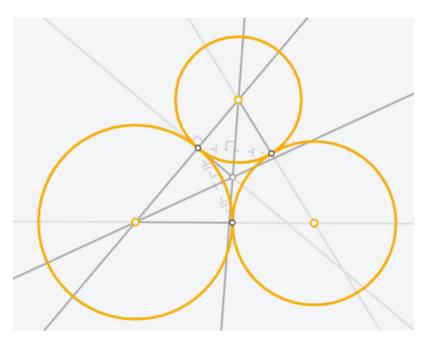


注 见 10.8.4E.

10.11 Three Circles - 2 ☆

Construct three circles tangent to each other at the given points.

9L

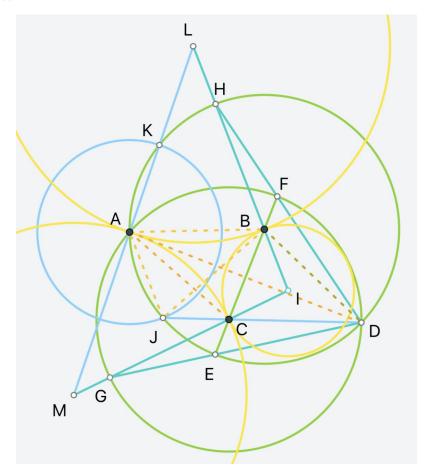


注 圆心三角形的内心即切点三角形的外心.

13E 🏠

- 1. 作圆 BA;
- 2. 作圆 CA, 交圆 BA 于点 D;
- 3. 连接 BC, 交圆 BA 于点 E, 交圆 CA 于点 E;

- 4. 连接 DE, 交圆 CA 于点 G;
- 5. 连接 DF, 交圆 BA 于点 H;
- 6. 连接 *GC*;
- 7. 连接 HB, 交 GC 于点 I;
- 8. 连接 DC, 交圆 BA 于点 J;
- 9. 作圆 AJ, 交圆 BA 于点 K;
- 10. 连接 AK, 交 BI 于点 L, 交 CI 于点 M;
- 11. 作圆 IB;
- 12. 作圆 LA;
- 13. 作圆 MA. 作完.



如图作辅助线.

由
$$CG = CD, BH = BD$$
知

$$\angle BCI = \angle GCE = \angle CED - \angle CGD$$

$$= \angle BDE - \angle CDE = \angle BDC$$

 $= \angle FDC - \angle FDB$

 $= \angle DFC - \angle FHB$

 $= \angle FBH = \angle CBI$,

故BI = CI.

由 $AD \perp FC$ 知

$$\angle ABL = 2\angle ADH = 2\angle ADF$$

= $\angle ACB = \angle DCB$
= $90^{\circ} - \angle ADJ$
= $(180^{\circ} - \angle ABJ)/2$
= $\angle BAJ = \angle BAL$,

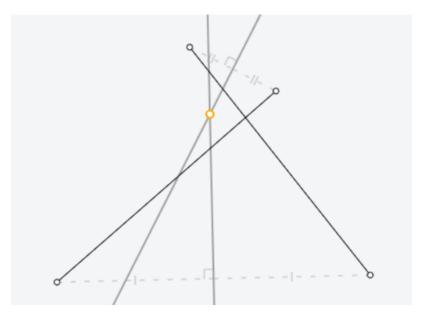
故AL = BL.

故 $\triangle ILM$ 即为圆心三角形. 证毕.

10.12 Center of Rotation ☆

Construct the center of rotation that transforms one of the given equal segments to the other one.

2L



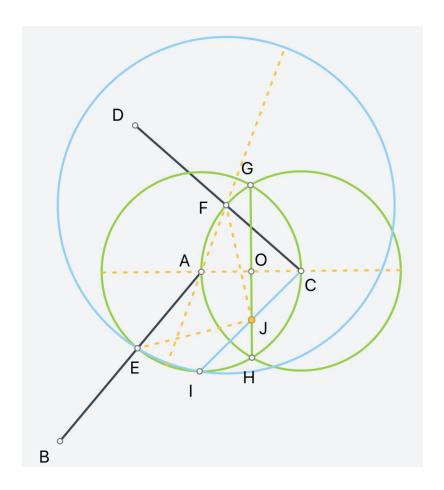
注 旋转中心即任意两组对应点中垂线的交点.

5E

作法

- 1. 作圆 AC, 交 AB 于点 E;
- 2. 作圆 CA, 交 CD 于点 F, 交圆 AC 于点 G 与 H;
- 3. 连接 GH;
- 4. 作圆 FE, 交圆 AC 于点 I;
- 5. 连接 CI, 交 GH 于点 J.

则点 J 记为所求旋转中心. 作完.



只需证 JF = JE.

以 AC 中点 O 为原点, OC 为 x 轴, OG 为 y 轴建系. 取 AC 为单位 1.

设
$$F=\left(rac{1}{2}+\coslpha,\sinlpha
ight)$$
 , $E=\left(-rac{1}{2}+\coseta,\sineta
ight)$, $I=\left(-rac{1}{2}+\cosarphi,\sinarphi
ight)$,

则直线
$$CI$$
 为: $y = \frac{-\sin \varphi}{1 - \cos \varphi} \left(x - \frac{1}{2} \right)$,

当
$$x=0$$
时, $y=rac{1}{2}rac{\sinarphi}{1-\cosarphi}$, 即 $J=\left(0,rac{1}{2}rac{\sinarphi}{1-\cosarphi}
ight)$.

欲证
$$JF=JE$$
, 只需证 $\overrightarrow{JF}^2=\overrightarrow{JE}^2$, 代入整理得: $\tan\frac{\varphi}{2}=\tan\frac{\alpha-\beta}{2}$.

而
$$lpha=2 \angle FAC=eta+arphi-2\pi$$
, 即 $anrac{arphi}{2}= anrac{lpha-eta}{2}.$

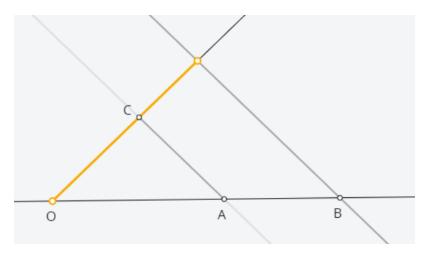
故 JF = JE, 即点 J 是旋转中心. 证毕.

$11.\lambda$

11.1 Fourth Proportional

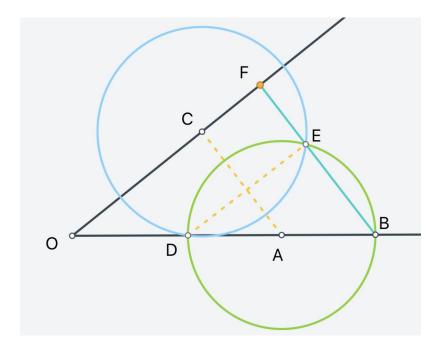
Construct a point D on the ray OC such that the segment OD is the fourth proportional to the given segments.

2L



注 过B作AC的平行线.

3E



注 利用 5.1.

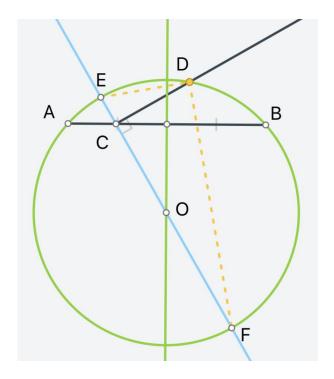
11.2 Geometric Mean of Segments 🌙

Construct a point on the given ray to get a segment with length equal to the geometric mean of two adjacent segments.

已知线段 AB 及其上一点 C, 求在过 C 的直线 l 上作一点 D, 使得 $CD = \sqrt{AC \cdot CB}$.

注 《几何原本》中的作法至少需要 4L 8E.

3L 🌙



作法

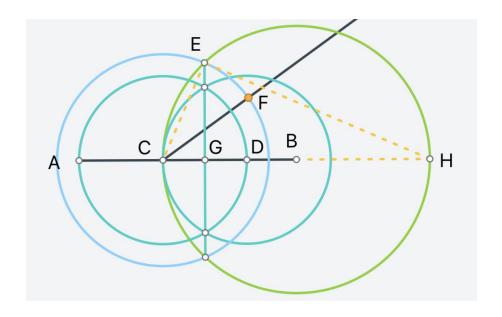
- 1. 作 *AB* 的中垂线 *m*;
- 2.作 $CO \perp l$, 交m于点O;
- 3. 作圆 OA, 交 l 于点 D.

则点 D 即为所求点. 作完.

证明

设 CO 交圆 OA 于点 E, F, 则 $CD^2 = EC \cdot CF = AC \cdot CB$. 证毕.

5E 🌙



以 AC <= CB 为例. (否则需要多出一步.)

- 1. 作圆 *BC*;
- 2. 作圆 CA, 交 AB 于点 D;
- 3. 作圆 DC;
- 4. 连接圆 CA 和圆 DC 的两个交点, 延长线交圆 B 于点 E;
- 5. 作圆 CE, 交 l 于点 F.

则点 F 即为所求点. 作完.

证明

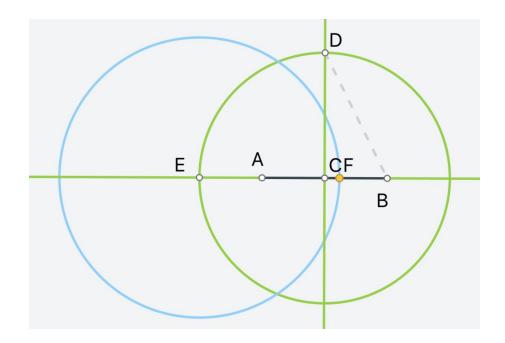
如图设点, 则 $AF^2=AE^2=CG\cdot CH=rac{1}{2}AC\cdot 2CB=AC\cdot CB$. 证毕.

Golden Section 🌙 11.3

Construct a point that divides the segment in the "golden section".

《几何原本》中的作法需要 5L 9E; 现代教材中常见作法需要 6L 10E.

4L 🌙



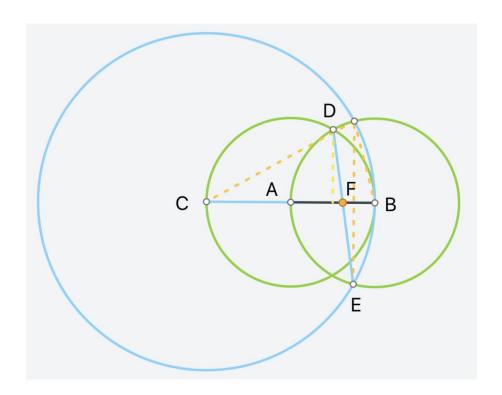
- 1. 作 AB 的中垂线, 交 AB 于点 C;
- 2. 以 C 为圆心, AB 为半径作圆, 交 AB 中垂线于点 D, 交 AB 于点 E;
- 3. 以 E 为圆心, BD 为半径作圆, 交 AB 于点 F.

则点 F 即为所求点. 作完.

证明

$$\Leftrightarrow$$
 $AB=$ 1, 则 $AC=EC-AE=DB-AE=rac{\sqrt{5}-1}{2}$. 证毕.

5E 🌙



- 1. 作圆 AB;
- 2. 延长 BA, 交 AB 于点 C;
- 3. 作圆 BA, 交圆 AB 于点 D;
- 4. 作圆 CB, 交圆 BA 于点 E, 且 D, E 在 AB 两侧;
- 5. 连接 DE, 交 AB 于点 F.

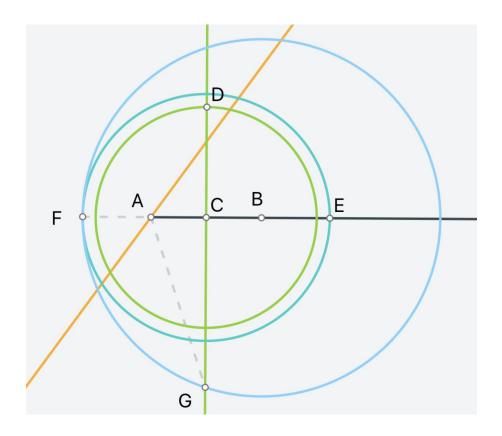
则点 F 即为所求点. 作完.

注 我直接勾股定理 + 相似剥蒜的, 不写过程了.

11.4 Angle of 54° \checkmark

Construct an angle of 54° with the given side.

已知以 A 为顶点的射线 l, 求作直线与 l 夹角为 45° .



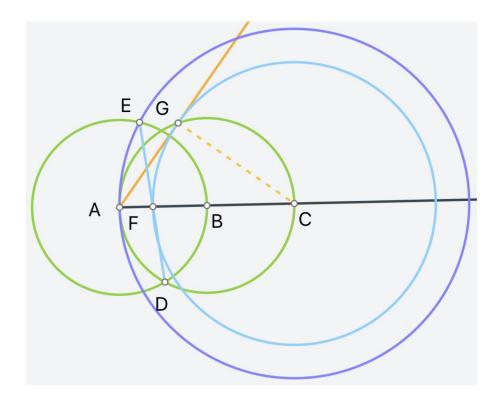
作法

- 1. 在 l 上取一点 B, 作 AB 的中垂线 m, 交 AB 于点 C;
- 2. 以 C 为圆心, AB 为半径作圆, 交 m 于点 D;
- 3. 以 C 为圆心, BD 为半径作圆, 交 l 于点 E;
- 4. 以 B 为圆心, AE 为半径作圆, 交圆 CE 于点 F, 交 m 于点 G;
- 5. 作 $\angle FAG$ 的角平分线. 则其为所求直线. 作完.

设 BA 的延长线交圆 CE 于点 F', 则 BF' = BC + CF = AC + CE = AE, 故作法第 4 步中的交点

$$\diamondsuit AB=2$$
, আ $BD=rac{\sqrt{5}}{2}$, $BG=AE=rac{\sqrt{5}+1}{2}$, $GC=\sqrt{GB^2-BC^2}=rac{\sqrt{5+2\sqrt{5}}}{2}$, $\angle CAD=\arctanrac{GC}{AC}=\arctan\sqrt{5+2\sqrt{5}}=72^\circ$,

故 $\angle FAG$ 的角平分线即为所求直线. 证毕.



作法

- 1. 在 l 上取一点 B, 作圆 AB;
- 2. 作圆 BA, 交 l 于点 C, 交圆 AB 于一点 D;
- 3. 作圆 CA, 交圆 AB 于点 E, 其中 E 与 D 位于异侧;
- 4. 连接 DE, 交 AB 于点 F;
- 5. 作圆 CF, 交圆 BA 于点 G.
- 6. 连接 *AG*.

则 AG 即为所求线. 作完.

证明

故
$$\angle GAC = rcsin rac{GC}{AC} = rcsin rac{\sqrt{5}+1}{4} = 54^\circ$$
. 证毕.

注
$$\Leftrightarrow arphi = rac{\sqrt{5}-1}{2}$$
,则 $\sin 18^\circ = rac{arphi}{2}$, $\cos 36^\circ = \sin 54^\circ = rac{1}{2arphi}$.

11.5 Third Parallel Line

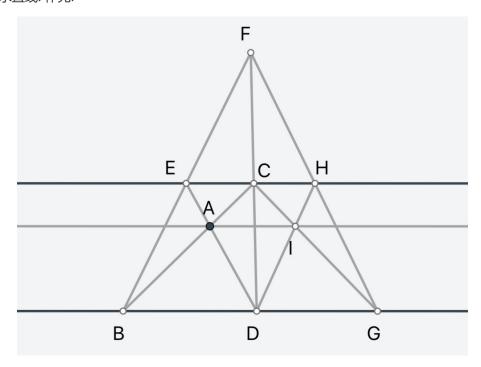
Construct a line through the given point that is parallel to the two given parallel lines using only a straightedge.

已知点 A 在平行线 l_1 和 l_2 外, 求过 A 作直线平行于 l_1 , 且只能使用无刻度直尺.

法一 $(8 \, \text{步}, \, \mathbf{e})$ 自由度为 $(8 \, \text{÷})$

- 1. 在 l_1 上取点 B, 连接 AB, 交 l_2 于点 C;
- 2. 在 l_1 上取点 D, 连接 AD, 交 l_2 于点 E;
- 3. 连接 *DC*;
- 4. 连接 BE, 交 DC 于点 F;
- 5. 在 l_1 上取点 G, 连接 FG, 交 l_2 于点 H;
- 6. 连接 *CG*;
- 7. 连接 DH, 交 CG 于点 I;
- 8. 连接 AI.

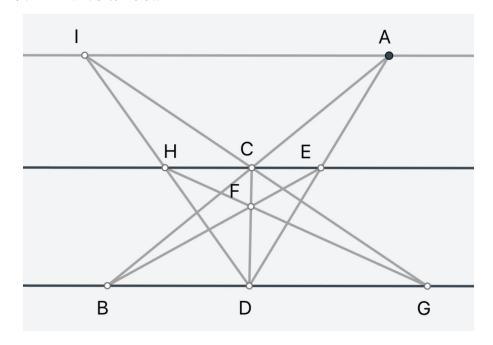
则 AI 为所求直线. 作完.



证明

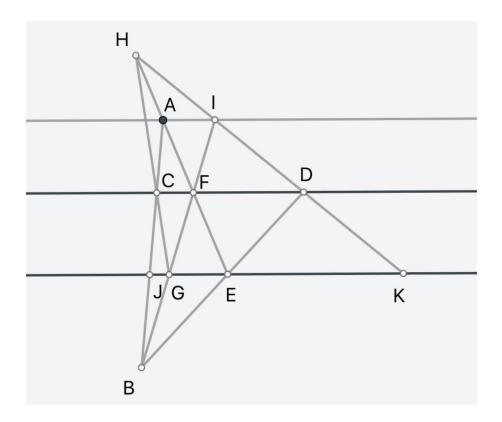
$$\frac{CA}{AB} = \frac{CE}{BD} = \frac{FC}{FD} = \frac{CH}{DG} = \frac{CI}{IG}$$
,故 $AI //BG$.证毕.

注 当点 A 不在两直线之间时, 如图所示



法二 (7 步, 自由度为 2 + 1)

- 1. 取两平行线外一点 B, 连接 AB, 交 l_1 于点 C;
- 2. 取 l_1 上一点 D, 连接 BD, 交 l_2 于点 E;
- 3. 连接 AE, 交 l_1 于点 F;
- 4. 连接 BF, 交 l_2 于点 G;
- 5. 连接 GC, 交 EA 于点 H;
- 6. 连接 HK, 交 BF 于点 I;
- 7. 连接 *AI*.
- 则 AI 为所求直线. 作完.



设 $AB\cap l_2=J,\ HD\cap l_2=K$, 则

$$\frac{AE}{AF} = \frac{EG}{FC} = \frac{EG}{FC} + \frac{GJ}{FC} = \frac{HE}{HF} + \frac{BG}{BF} = \frac{EK}{FD} + \frac{GE}{FD} = \frac{GK}{FD} = \frac{GI}{FI},$$
故 $AI //CD$. 证毕.

注 根据点 A, B, l_1 和交点 H 的相对位置, 有如下等价情况

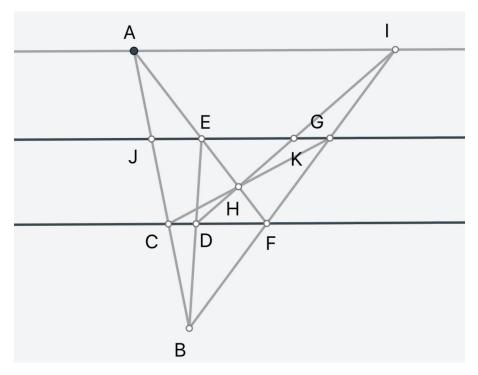
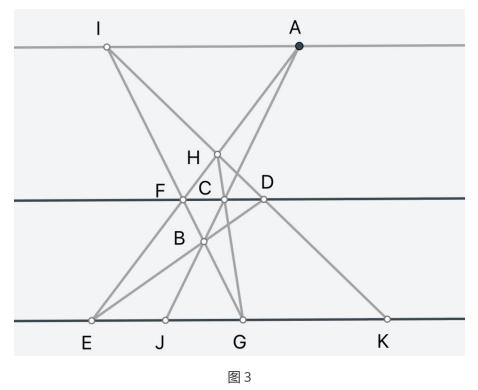


图 2



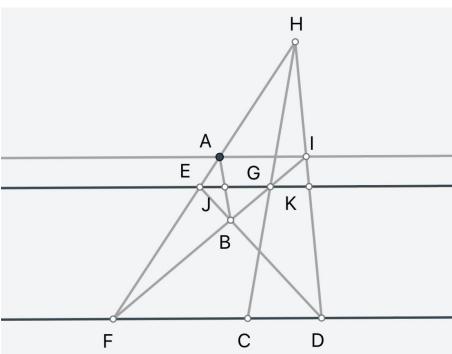
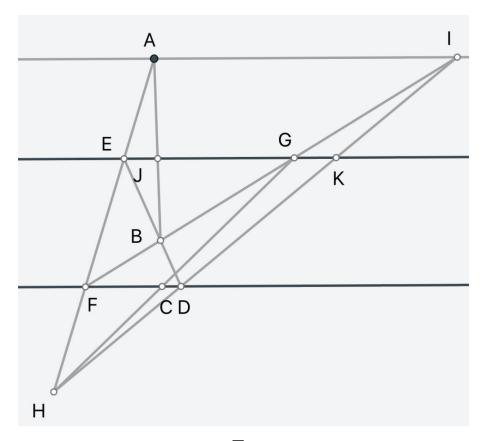


图 4



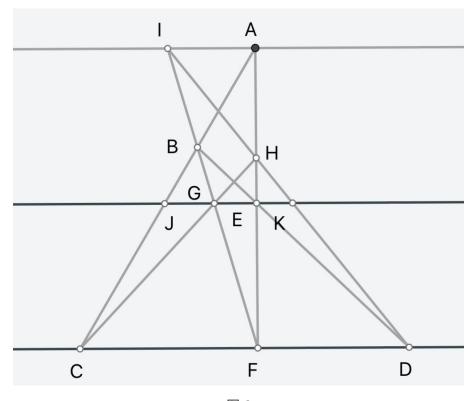


图 6

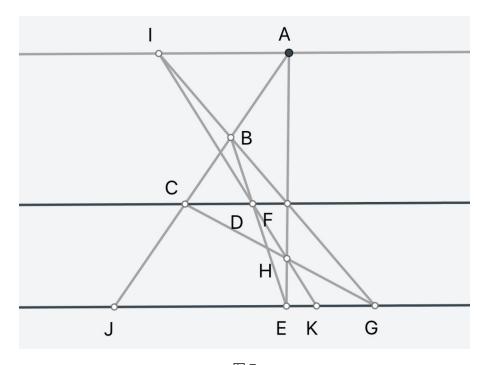


图 7

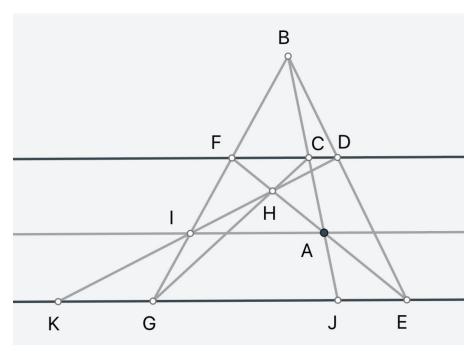
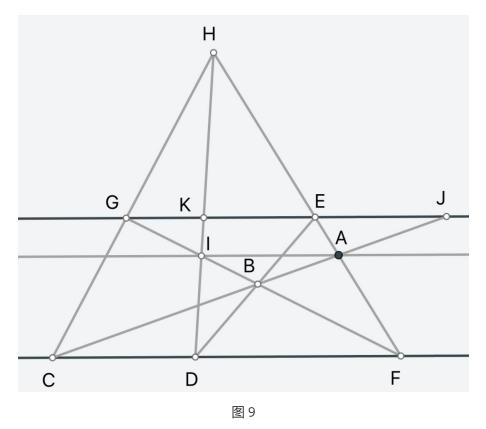


图 8



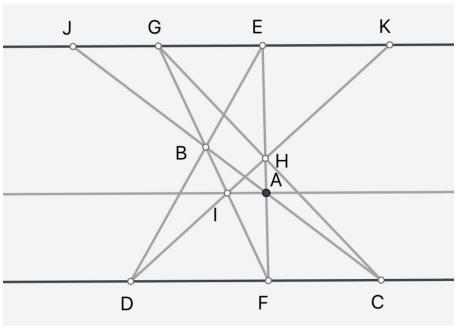


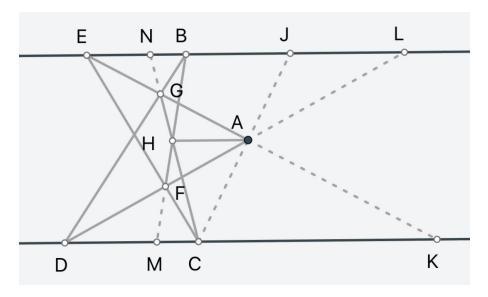
图 10

法三 (7 步, 自由度为 $4 \cdot 1$)

在 l_1 上取点C,D,在 l_2 上取点B,E.

- 1. 连接 *BD*;
- 2. 连接 *CE*;
- 3. 连接 AD, 交 CE 于点 F;
- 4. 连接 AE, 交 BD 于点 G;

- 5. 连接 *BF*;
- 6. 连接 CG, 交 BF 于点 H;
- 7. 连接 *AH*;
- 则 AH 即为所求线. 作完.



如图作辅助线,则

$$\frac{HM}{HB} = \frac{MC}{NB} = \frac{MC}{CD} \cdot \frac{CD}{NB} = \frac{EB}{EL} \cdot \frac{DK}{BE} = \frac{CA}{AJ},$$

故 AH // NJ. 证毕.

法四 (7 步, 自由度为 2 · 2)

在平行线外取点 F, G.

- 1. 连接 AF, 交 l_1 于点 D;
- 2. 连接 AG, 交 l_2 于点 E;
- 3. 连接 FE, 交 l_1 于点 C;
- 4. 连接 GD, 交 l_2 于点 B;
- 5. 连接 *FB*;
- 6. 连接 *GC*, 交 *FB* 于点 *H*;
- 7. 连接 AH.
- 则 AH 即为所求线. 作完.



证明 与法三完全相同. (包括字母) 证毕.

11.6 Circle in Angle 🌙

Construct a circle through the given point that is tangent to both sides of the angle.

已知 $\angle A$ 的两边为 l_1 和 l_2 , 点 B 在角内, 求过 B 作圆与 $\angle A$ 的两边相切.

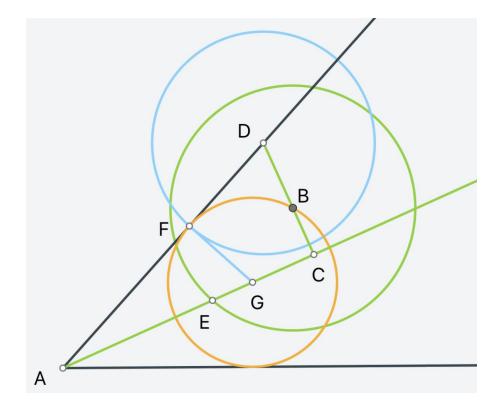
注 此即阿波罗尼斯第三问题 (LLP), 最多有两解.

作法

- 1. 作 $\angle A$ 的角平分线 m;
- 2. 作 $BC \perp m$, 交 m 于点 C, 交 l_1 于点 D;
- 3. 以 B 为圆心, CD 为半径作圆, 交 m 于点 E;
- 4. 以 D 为圆心, CE 为半径作圆, 交 l_1 于点 F;
- 5.作 $FG \perp l_1$,交m于点G;
- 6. 作圆 GB.

则圆 GB 即为所求作圆. 作完.

注 若圆 D 与 l_1 有两个交点, 则有另一解.



 $\diamondsuit BC=h,\ CG=d,\ CD=R_1,\ CE=R_2,\ GF=R_3$, 则

在 $Rt \triangle BCE$ 中, $R_1^2-h^2=R_{2'}^2$

在 Rt $\triangle DFG$ 和 Rt $\triangle DCG$ 中, $R_2^2+R_3^2=d^2+R_1^2$,

故 $BG^2=d^2+h^2=R_{3'}^2$,即圆 GB 即为所求作圆.

证毕.

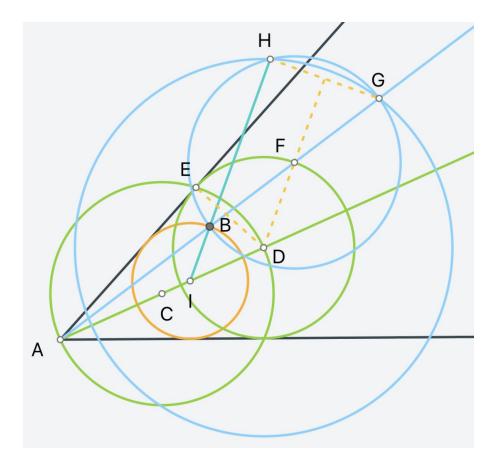
11E 🌙

作法

- 1. 作 $\angle A$ 的角平分线 m; (4E)
- 2. 在m上取一点C,作圆CA,交m于点D,交 l_1 于点E;
- 3. 连接 AB;
- 4. 作圆 DE, 交 AB 于点 F;
- 5. 作圆 FB, 交 AB 于点 G;
- 6. 作圆 DG, 交圆 FB 于点 H;
- 7. 连接 HB, 交 m 于点 I;
- 8. 作圆 IB.

则圆 IB 即为所求作圆. 作完.

注 即任作一圆后利用位似作所求圆.



 $AE \perp DE$, 故圆 $DE \vdash \angle A$ 两边相切.

 $IH \perp HG$, $HG \perp DF$, $to IB \perp FD$,

故圆 IB 与圆 DF 位似, 即为所求圆.

证毕.

11.7 Geometric Mean of Trapezoid Bases 🥒

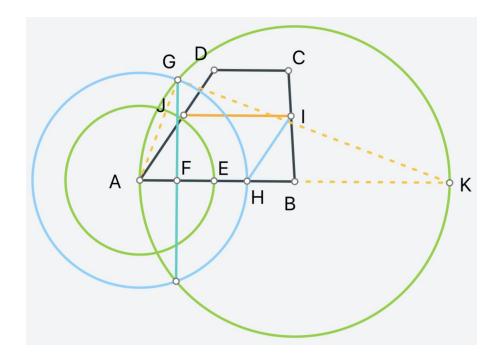
Join the legs of the trapezoid with a segment that is parallel to the bases and whose length is equal to the geometric mean of their length.

在梯形 ABCD 中 AB // CD, 求作梯形腰上两点的连线, 使之平行与底边, 且长为上下底的几何均值.

作法

- 1. 作圆 BA;
- 2. 以 A 为圆心, CD 为半径作圆, 交 AB 于点 E;
- 3. 作 AE 的中垂线, 交 AE 于点 F, 交圆 BA 于点 G;
- 4. 作圆 AG, 交 AB 于点 H;
- 5.作 HI // AD, 交 BC 于点 I;
- 6.作IJ // AB,交AD 于点J.

则 IJ 即为所求线段. 作完.

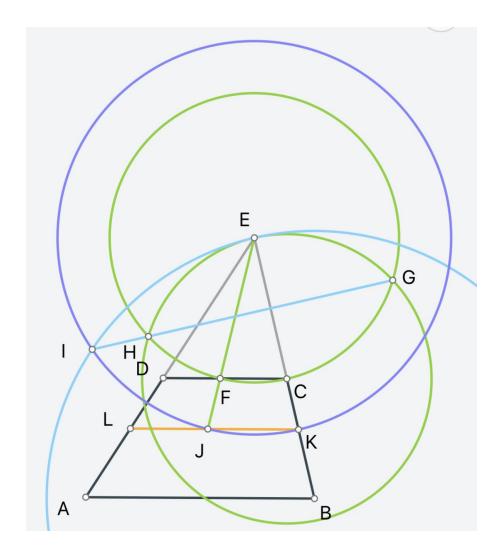


如图作辅助线, 则 $IJ^2=AH^2=AG^2=AF\cdot AK=AE\cdot AB=DC\cdot AB.$ 证毕.

9E 🌙

作法

- 1. 延长 *AD*;
- 2. 延长 BC, 交 AD 于点 E;
- 3. 作圆 EC,交 CD 于点 F;
- 4. 连接 *EF*;
- 5. 作圆 CE, 交圆 EC 于点 G 与 H;
- 6. 连接 *GH*;
- 7. 作圆 BE, 交 HG 于点 I;
- 8. 作圆 EI, 交 EF 于点 J, 交 BC 于点 K;
- 9. 连接 KJ, 交 AD 于点 L.
- 则 KL 即为所求线段. 作完.



由 11.7.6L 同理知: $EK^2 = EC \cdot EB$,

 $\triangle EFC$ 与 $\triangle EJC$ 位似, 故 JK // CF,

设 $EC = k \cdot CD$,则 $EK = k \cdot LK$, $EB = k \cdot AB$,

故 $LK^2 = CD \cdot AB$. 证毕.

11.8 Regular Pentagon 🌙

Construct a regular pentagon inscribed in the circle. A vertex is given.

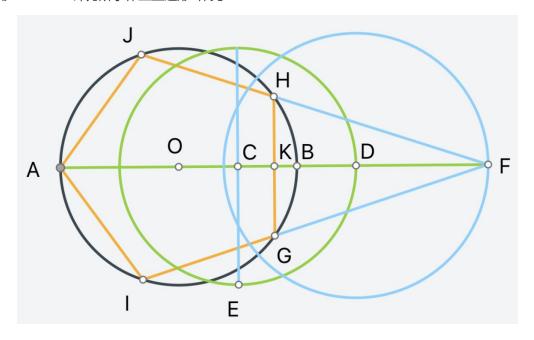
已知圆 OA, 求过 A 作其内接正五边形.

9L 🌙

- 1. 连接 AO, 交圆 O 于点 B;
- 2. 作 OB 的中垂线 m, 交 OB 于点 C;
- 3. 以 C 为圆心, AO 为半径作圆, 交 AO 于点 D, 交 m 于一点 E;
- 4. 以 D 为圆心, BE 为半径作圆, 交 AO 于点 F (这里以 F 在圆 O 外为例);
- 5. 作 AF 的中垂线, 交圆 O 于点 G 与 H, 交 AB 于点 K.

- 6. 连接 FG, 交圆 O 于点 I;
- 7. 连接 FH, 交圆 O 于点 J;
- 8. 连接 AI;
- 9. 连接 AJ.

则五边形 AIGHJ 即为所求作正五边形. 作完.



证明

令
$$OA=1$$
, 则 $DF=rac{\sqrt{5}}{2},\ OK=rac{\sqrt{5}+1}{4},\ \angle OHK=rcsinrac{OK}{OH}=54^\circ$,

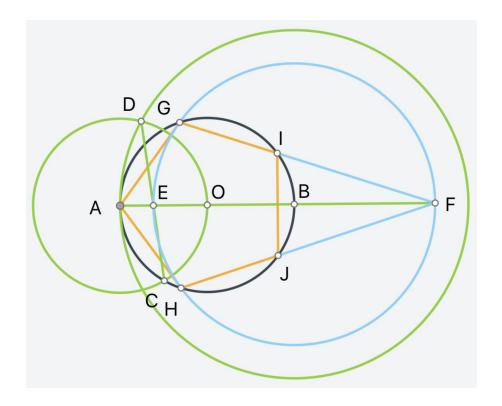
 $\angle HOB = 36^{\circ}, \ \angle FHA = \angle HAF = 27^{\circ}, \ \angle JHO = \angle HOK + \angle FHA = 54^{\circ}.$

故五边形 AIGHJ 即为所求作正五边形. 证毕.

10E 🌙

- 1. 连接 AO, 交圆 O 于点 B;
- 2. 作圆 AO, 交圆 O 于点 C;
- 3. 作圆 BA, 交圆 AO 于点 D, 且 C 与 D 在 AO 两侧;
- 4. 连接 *CD*, 交 *AO* 于点 *E*;
- 5. 作圆 BE, 交 AO 于点 F, 交圆 O 于点 G 与 H;
- 6. 连接 FG, 交圆 O 于点 I;
- 7. 连接 FH, 交圆 O 于点 J;
- 8. 连接 *IJ*;
- 9. 连接 *AG*;
- 10. 连接 AH.

则五边形 AHJIG 即为所求作正五边形. 作完.



令
$$AO=1$$
, 则由 11.3.5E 知: $OE=\frac{\sqrt{5}-1}{2}$, $BG=\frac{\sqrt{5}+1}{2}$, $\angle GAB=\arcsin\frac{BG}{BA}=54^\circ$, $\angle BGF=\frac{1}{2}\angle ABG=18^\circ$, $\angle AGI=\angle AGB+\angle BGI=108^\circ$,

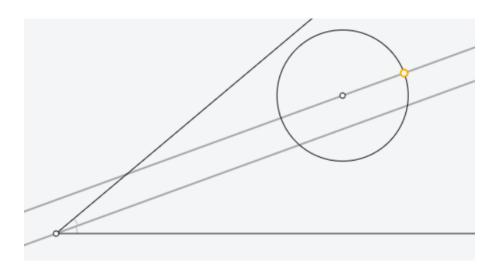
故五边形 AHJIG 即为所求作正五边形. 证毕.

11.9 Point Farthest from Angle Sides

Construct a point of the circle such that the sum of distances from it to the sides of the angle is the maximum possible.

已知圆 O 和圆外两条直线 l_1 和 l_2 交于点 A, 求作圆上一点 B, 使之与两直线距离之和最大.

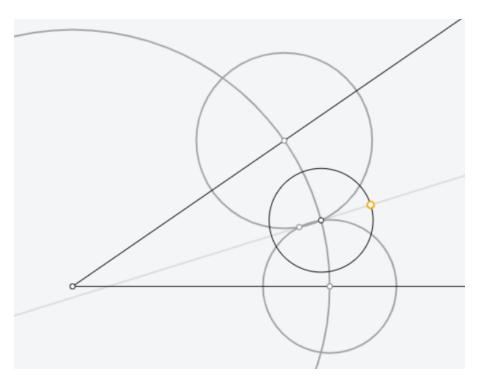
2L



注 设两直线夹角为 $\alpha\in(0,\pi)$, OB 与 l_1 夹角为 θ , 点 O 到 l_1 和 l_2 的距离分别为 d_1 和 d_2 , 则 B 与两直线的距离之和为

$$d_1+d_2+\sin heta+\sin\left(lpha- heta
ight)=d_1+d_2+2\sinrac{lpha}{2}\cos\left(heta-rac{lpha}{2}
ight).$$

4E 🌙



注 直接作出中垂线 (角平分线) 的平行线.

11.10 Ratio 1 to 5 \checkmark

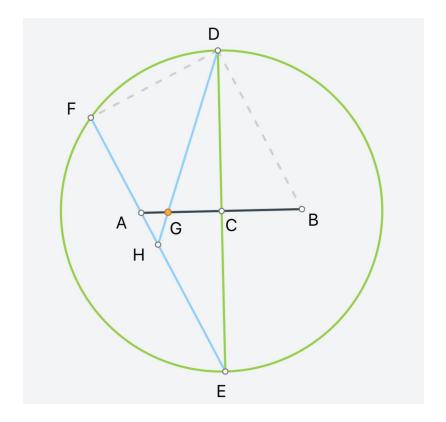
Construct a point on the line segment that divides it in the ratio 1:5.

已知线段 AB, 求作第一个六等分点.

作法

- 1. 作 AB 的中垂线 m, 交 AB 于点 C;
- 2. 以 C 为圆心, AB 为半径作圆, 交 m 于点 D 与 E;
- 3. 连接 EA, 交圆 C 于点 F;
- 4. 作 $\angle BDF$ 的角平分线, 交 AB 于点 G, 交 EF 于点 H.

则 G 即为所求点. 作完.



AE //BD, $\angle DFE = 90^{\circ}$, $\angle FHD = \angle HDB = \angle HDF = 45^{\circ}$,

$$\diamondsuit AB=1$$
, நு $AE=DB=rac{\sqrt{5}}{2}$, $FH=DF=rac{2\sqrt{5}}{5}$, $EF=rac{4\sqrt{5}}{5}$,

$$AH=FH+AE-EF=rac{\sqrt{5}}{10}$$
, 故 $AG:GB=AH:DB=1:5$.

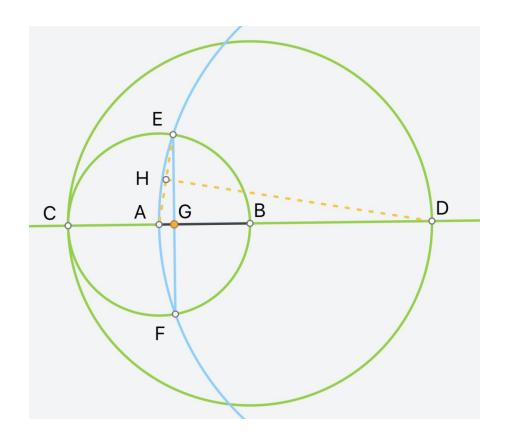
证毕.

5E 🌙

作法

- 1. 作直线 AB;
- 2.作圆 AB, 交 AB 于点 C;
- 3. 作圆 BC, 交 AB 于点 D;
- 4. 作圆 DA, 交圆 AB 于点 E 与 F;
- 5. 连接 EF, 交 AB 于点 G.

则 G 即为所求点. 作完.



连接 AE, 作 $DH \perp AE$ 交 AE 于点 H,

则
$$\triangle AEG \backsim \triangle AHD$$
, 故 $\dfrac{AB}{AG}=\dfrac{2AH}{AG}=\dfrac{2AD}{AE}=6.$

证毕.

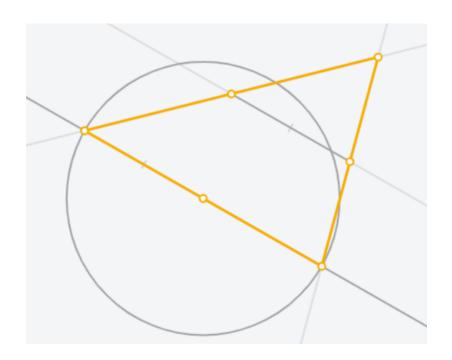
$12. \mu$

12.1 Triangle by Midpoints 🗙

Construct a triangle given the midpoints of its sides.

求作一三角形, 已知其三边中点 A, B, C.

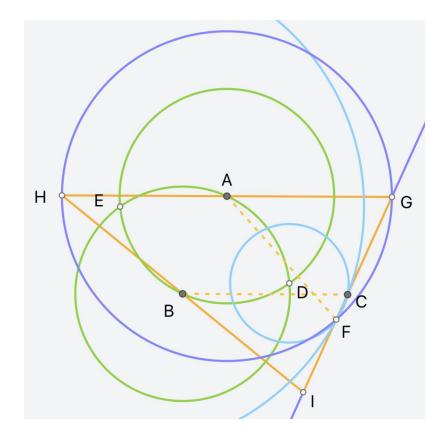
5L



8E 🏡

作法

- 1. 作圆 AB;
- 2. 作圆 BA, 交圆 AB 于点 D 与 E;
- 3. 作圆 DC;
- 4. 作圆 EC, 交圆 DC 于点 F;
- 5. 连接 *CF*;
- 6.作圆 AF, 交 CF 于点 G;
- 7. 连接 GA, 交圆 A 于点 H;
- 8. 连接 HB, 交 CF 于点 I;
- 则 $\triangle GHI$ 即为所求作三角形. 作完.



前四步: AB // CF, $\angle BCF = \angle AFC$ (全等可证).

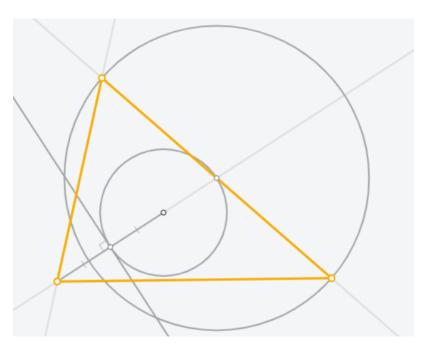
后四步: $\angle AGF = \angle AFG = \angle BCF$, 故 $AG \ // \ BC$, 四边形 ABCG 是平行四边形,

HA = AG = BC, $\triangle GHI$ 即为所求作三角形. 证毕.

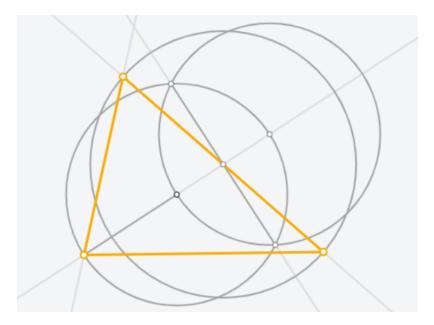
12.2 Triangle by Side and Centroid

Construct a triangle with the given side and centroid.

6L



7E

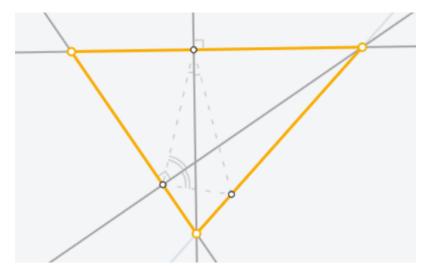


注 直接在顶点到重心延长线上作中点.

12.3 Triangle by Altitude Base Points 🖈

Construct an acute triangle whose altitude base points are given.

5L



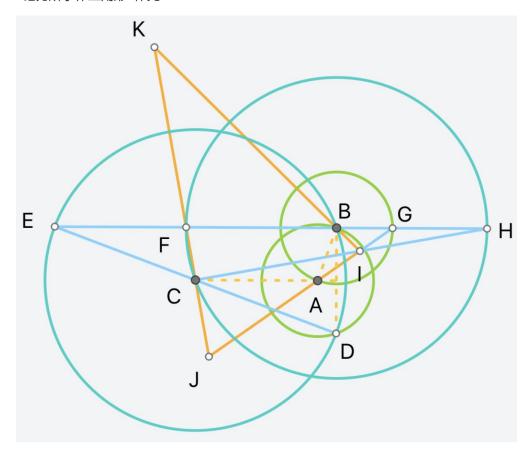
注 三角形垂心是垂直三角形的内心. (四点共圆可证.)

10E ☆

- 1. 作圆 AB;
- 2. 作圆 BA;
- 3. 作圆 BC;
- 4. 作圆 CB, 交圆 AB 于点 D;

- 5. 连接 DC, 交圆 CB 于点 E;
- 6. 连接 EB, 依次交圆 BC, 圆 BA, 圆 BC 于点 F, G, H;
- 7. 连接 HC;
- 8. 连接 *CF*;
- 9. 连接 GA, 交 HC 于点 I, 交 CF 于点 J;
- 10. 连接 IB, 交 CF 于点 K.

则 $\triangle IJK$ 记为所求作三角形. 作完.



证明

 $CA \perp DB,\ DB \perp BE$, 故 $AC \ //\ BE,\ \angle ACH = \angle CHB = \angle HCB$, 故 CH 即为垂足 C 对应的高线.

 $\angle HCF = 90^{\circ}$, 故 JK 即为所求三角形一边.

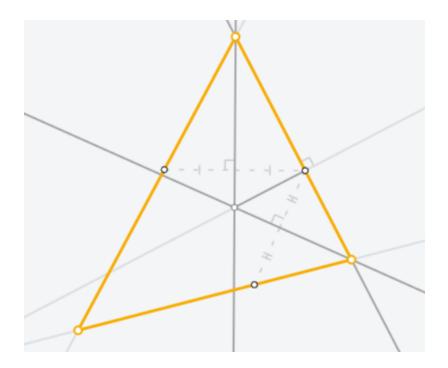
 $\angle JAC = \angle JGF = \angle BAG$, 故 GJ 即为所求三角形一边.

故 $\triangle IJK$ 记为所求作三角形. 证毕.

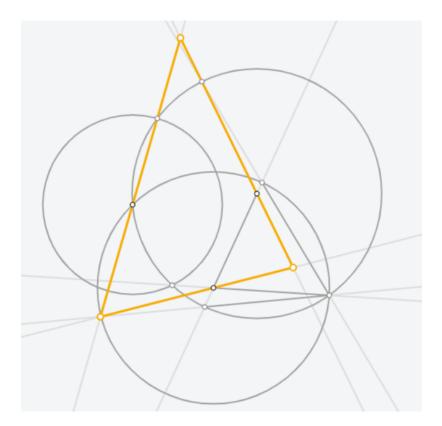
12.4 Triangle by Tangent Points

Construct a triangle with the three given points where its incircle touches its sides.

6L



10E ☆



作法 见 10.11.13E.

证明 见 10.11.13E.

12.5 Triangle by Excenters

Construct a triangle with the given excenters.

9L 11E 🇙



注 一个三角形的内心即旁心三角形的垂心, 且这个三角形是其旁心三角形的垂足三角形, 并且内接三角形中周长最小的三角形即垂足三角形 (施瓦茨问题). 见命题 9.7.

12.6 Equilateral Triangle by Centroid and Two Points

Construct three lines that form an equilateral triangle with the centroid in the point O so that two of them contain one of the two given points each.

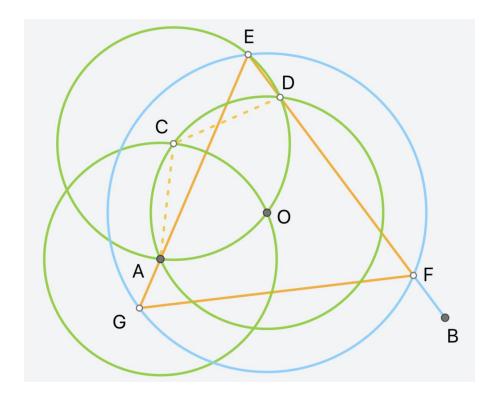
以已知点 O 为中心, 作等边三角形经过点 A 与 B.

7L 7E 🌙

作法

- 1. 作圆 *AO*;
- 2. 作圆 OA, 交圆 AO 于点 C;
- 3. 作圆 CO, 交圆 OA 于点 D;
- 4. 连接 BD, 交圆 CO 于点 E;
- 5. 作圆 OE, 交线 BD 于点 F
- 6. 连接 EA, 交圆 OE 于点 G;
- 7. 连接 *FG*.

则 $\triangle EFG$ 即为所求作三角形. 作完.



点 A 绕点 O 逆时针旋转 120° 即点 D, 且 $\angle AED = \frac{1}{2} \angle ACD = 60^\circ$.

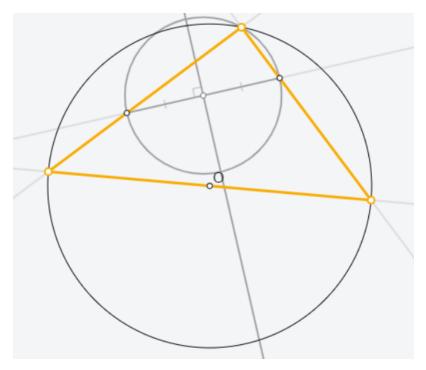
故 $\triangle EFG$ 即为所求作三角形. 证毕.

注 顺时针旋转 120° 即为另一解.

12.7 Right Triangle by Two Points on Legs

Inscribe a right triangle into the circle so that the two given points lie on its two legs respectively. The center of the circle is in the point O.

6L 8E

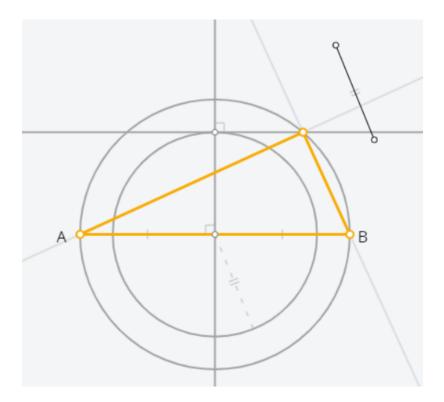


12.8 Hypotenuse and Altitude

Given hypotenuse AB, construct a right triangle whose altitude drawn to AB is equal to the given segment.

求以线段 AB 为斜边, d 为 AB 边上的高, 作一直角三角形.

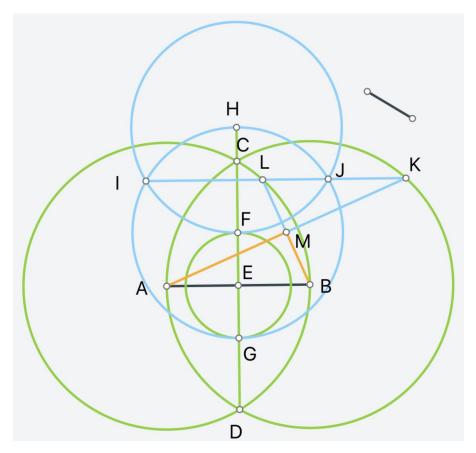
6L



13E 🌙

- 1. 作圆 AB;
- 2. 作圆 BA, 交圆 AB 于点 C, D;

- 3. 连接 CD, 交 AB 于点 E;
- 4. 以 E 为圆心, h 为半径作圆, 交 CD 于点 F 与 G; (5E)
- 5. 作圆 FG, 交 CD 于点 H;
- 6. 作圆 HF, 交圆 FG 于点 I 与 J;
- 7. 连接 IJ, 交圆 BA 于点 K, 交圆 AB 于点 L, 其中 L 在线段 IJ 上, K 在线段 IJ 的延长线上;
- 8. 连接 AK;
- 9. 连接 BL, 交 AK 于点 M.
- 则 $\triangle ABM$ 即为所求三角形. 作完.

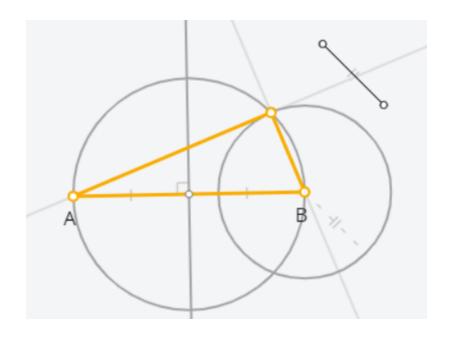


LK // AB, 四边形 ABKL 是菱形 (可以使用锐角三角形中的 "ASS" 证明) , 故 $AM \perp BM$, 且 $\triangle ABM$ 在 AB 边上的高为菱形高的一半,即 h. 故 $\triangle ABM$ 即为所求三角形. 证毕.

12.9 Hypotenuse and Leg 🌙

Construct a right triangle with the given hypotenuse AB and whose leg is equal to the given segment.

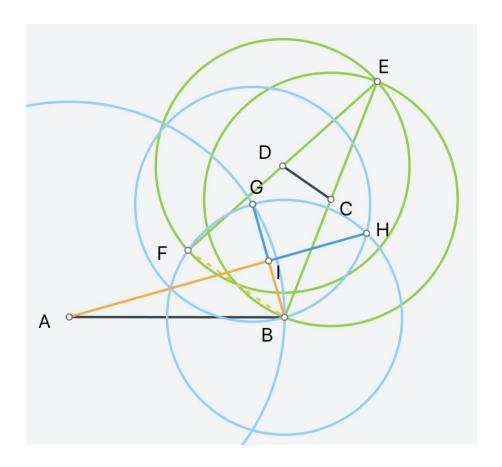
5L



9E 🌙

作法

- 1. 连接 *BC*;
- 2. 作圆 BC, 交 BC 于点 E;
- 3. 连接 *DE*;
- 4. 作圆 DE, 交 DE 于点 F;
- 5.作圆 *BF*;
- 6. 作圆 AB, 交圆 BF 于点 G;
- 7. 连接 *GB*;
- 8. 作圆 GB, 交圆 BF 于点 H;
- 9. 连接 *AH*;
- 10. 连接 BG, 交 AH 于点 I.
- 则 $\triangle ABI$ 即为所求三角形. 作完.

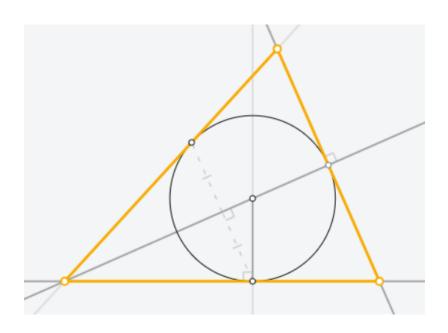


CD 是 $\triangle BFE$ 的中位线, BG=FB=2CD, 且 AH 垂直平分 BG. 故 $\triangle ABI$ 即为所求三角形. 证毕.

12.10 Isosceles Triangle by Tangent Points 🖈

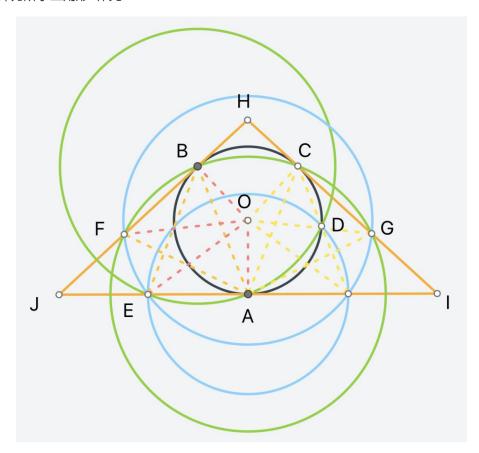
Construct an isosceles triangle that is circumscribed about the circle and contains the given points. 求作圆 O 的外切三角形,使之切于已知点 A 与 B.

5L



- 1. 作圆 AB, 交圆 OA 于点 C;
- 2. 作圆 BA, 交圆 OB 于点 D;
- 3. 作圆 AD, 交圆 BA 于点 E;
- 4. 作圆 OE, 交圆 AB 于点 F 与 G;
- 5. 连接 *BF*;
- 6. 连接 *GC*, 交 *BF* 于点 *H*;
- 7. 连接 AE. 交 CG 于点 I, 交 BF 于点 J.

则 $\triangle HIJ$ 即为所求三角形. 作完.



证明

由命题 2.8 知: $OA \perp AE$.

AF = AB = BE, AO = BO, FO = EO, $\triangle AOF \cong \triangle BOE.$

 $\angle AOE = \angle AOF - \angle EOE = \angle BOF - \angle EOF = \angle BOF$, AO = BO, EO = FO, 故 $\triangle AOE \cong \triangle BOF$.

故 $\angle OBF = \angle OAE = 90^{\circ}$, 同理 $OC \perp HI$.

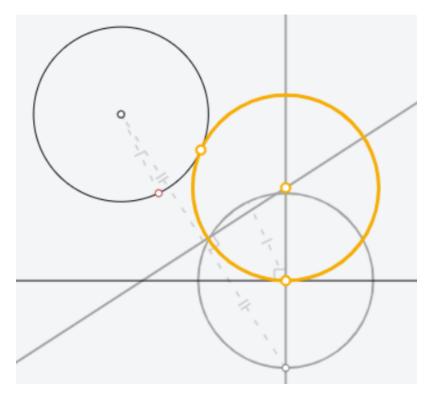
故 $\triangle HIJ$ 即为所求三角形. 证毕.

13.1 Circle Tangent to Line and Circle

Construct a circle tangent to the line at the given point and to the given circle.

求作圆与直线 l 切于点 A, 且与圆 O 相切.

4L



注 已知焦点,作出抛物线的准线.

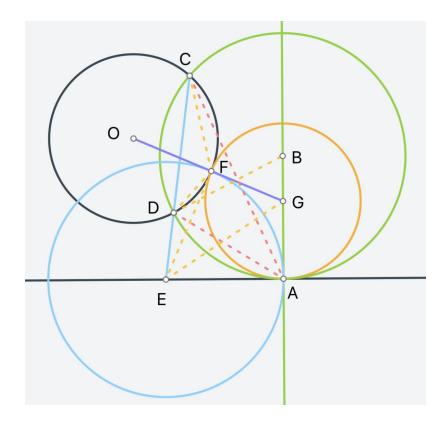
8E ☆ ৶

作法

- 1. 过点 A 作 $m \perp l$;
- 2. 在直线 m 上取一点 B, 作圆 BA, 使之与圆 O 有两个交点 C 与 D;
- 3. 连接 CD, 交 l 于点 E;
- 4. 作圆 EA, 交圆 O 于点 F;
- 5. 连接 OF, 交 m 于点 G;
- 6. 作圆 GA.

则圆 GA 即为所求圆. 作完.

注 根据点 F 的位置, 有内切与外切两个解.



$$\angle EAD = 90^{\circ} - \angle DAB = \frac{1}{2} \angle ADB = \angle ECA$$
, $\angle DEA = \angle AEC$,

故 $\triangle EAD \sim \triangle ECA$, $EF^2 = EA^2 = ED \cdot EC$, 故 $EF \perp OF$ (圆幂定理逆定理).

故 $\triangle EFG \cong \triangle EAG$ (HL), FG = AG.

故圆 GA 即为所求圆. 证毕.

注 实际上根轴 CD 上任意一点到圆 O 与圆 BA 的切线长相等。第一步相似的条件即弦切角定理。

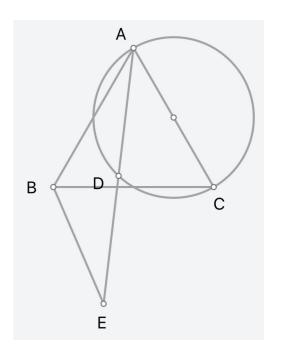
注 由外切圆的唯一性知 AE 长为定值.

13.2 Equilateral Triangle - 2

Construct an equilateral triangle whose one vertex is given and two others lie on the two parallel lines. 给定一点 A, 求作等边三角形 ABC, 且另外两个端点在已知两直线 l_1 和 l_2 上.

13.2.1 引理

已知点 D 在以等边三角形 ABC 的边 AC 为直径的圆上, 且为 AE 中点, 则 $\angle BEA=30^\circ$.



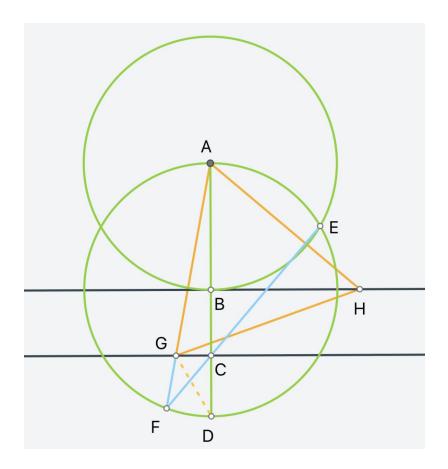
CD 垂直平分 AE, 故 ABCE 四点共圆, 故 $\angle BEA = \frac{1}{2} \angle BCA = 30^{\circ}$.

7L ☆ 🌙

作法

- 1. 作 $AB \perp l_1$, 交 l_1 于点 B, 交 l_2 于点 C;
- 2.作圆 BA, 交 AB 于点 D;
- 3. 作圆 *AB*, 交圆 *BA* 于一点 *E*;
- 4. 连接 EC, 交圆 BA 于点 F;
- 5. 连接 AF, 交 l_2 于点 G;
- 6.作 $AH \perp AE$, 交 l_1 于点H;
- 7. 连接 GH.

则 $\triangle AGH$ 即为所求三角形. 作完.



$$\angle AFE = rac{1}{2} \angle ABE = 30^{\circ}$$
 , $\angle HAG = 90^{\circ} - \angle AFE = 60^{\circ}$,

 $\angle GCD = \angle GFD = 90^{\circ}$, 故 CDFG 四点共圆, $\angle GDC = \angle GFC = 30^{\circ}$.

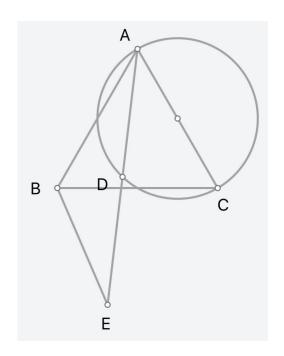
又 Ab=BD, 由反证法知以 AG 为边的等边三角形若另一点 H' 与 D 在 AG 同侧, 则 H' 在 l_1 上, 故 $\triangle AGH$ 即为所求三角形. 证毕.

注 设圆 AB 与圆 BA 交于另一点 I, 则 IGD 三点共线, 因为 $\angle IDA = \angle GDA = 30^{\circ}$.

注 由此可以证明上述引理的逆定理,即

13.2.2 逆定理 1

若 $\angle BAC = 60^{\circ}$, $\angle BEA = 30^{\circ}$, CD 垂直平分 AE, 则 $\triangle ABC$ 是等边三角形.



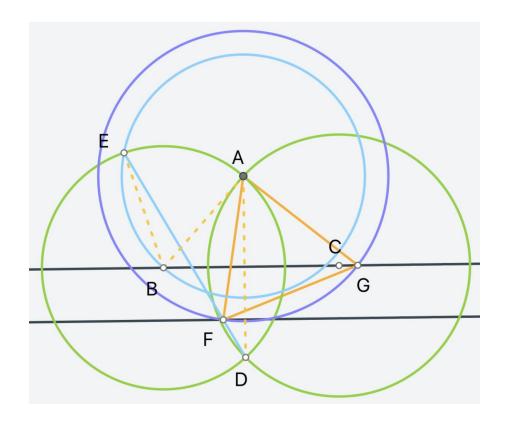
8E ☆ 🌙

作法

在 l_1 上任取两点 B 与 C.

- 1. 作圆 *BA*;
- 2. 作圆 CA, 交圆 BA 于点 D;
- 3. 作圆 AB, 交圆 BA 于点 E;
- 4. 连接 DE, 交 l_2 于点 F;
- 5. 作圆 AF, 交 l_1 于点 G;
- 6. 连接 *AG*;
- 7. 连接 *FG*.
- 8. 连接 AF.

则 $\triangle AFG$ 即为所求三角形. 作完.



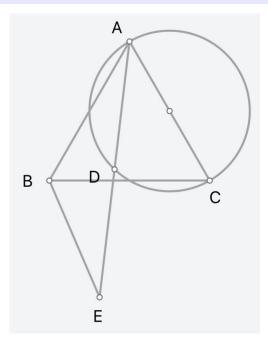
A 与 D 关于 l_1 对称, $\angle FDA = \frac{1}{2} \angle EBA = 30^\circ$, AF = AC,

故 $\triangle AFG$ 即为所求三角形. 证毕.

注 类似 13.2.7L 有如下逆定理

13.2.3 逆定理 2

若 AB=BC, $\angle BEA=30^\circ$, CD 垂直平分 AE, 则 $\triangle ABC$ 是等边三角形.



13.3 Equilateral Triangle On Concentric circles

Construct an equilateral triangle with the given vertex so that the other vertices lie on the given concentric circles respectively.

求作等边三角形, 使其一定点为已知点 A, 另外两个点在以 O 为圆心的同心圆 O_1 和 O_2 上, 其中圆 O_2 的半 径更大.

注 如果至少有一解,则有且仅有四解.

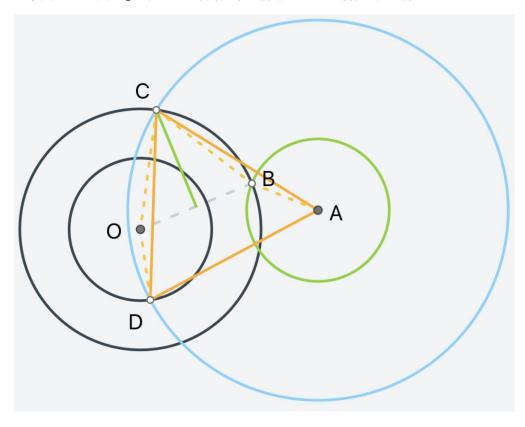
6L ☆ 🥒

作法

- 1. 以 A 为圆心, 圆 O_1 半径为半径作圆, 交圆 O_2 于点 B;
- 2. 作 OB 的中垂线 m, 交 O_2 于一点 C;
- 3. 作圆 AC, 交圆 O_1 于一点 D, 且 D 与 C 在 AO 两侧;
- 4. 连接 *AC*;
- 5. 连接 *CD*;
- 6. 连接 *DA*.

则 $\triangle ACD$ 即为所求三角形. 作完.

注 若点 C 取圆 AB 与圆 O_2 的另一交点, 则为第二解. 关于 AO 对称又有两解.



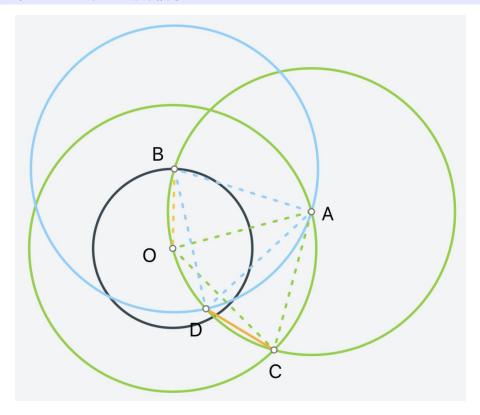
证明

作圆 CA, 交圆 O_1 于一点 D', 使 A 与 D 在 CO 同侧.

则 $\triangle COD' \cong \triangle CBA \ (SSS)$, $\angle ACD = \angle ACB + \angle BCD = \angle OCD + \angle BCD = 60^{\circ}$.

13.3.1 引理

已知圆 O 和圆外一点 A, 作圆 AO 交圆 O 于一点 B, 作圆 OA, 交圆 AO 于一点 C, 作圆 BA 交圆 AB 于点 D, 且 C 与 D 在 AB 同侧, 则 CD = OB.



证明

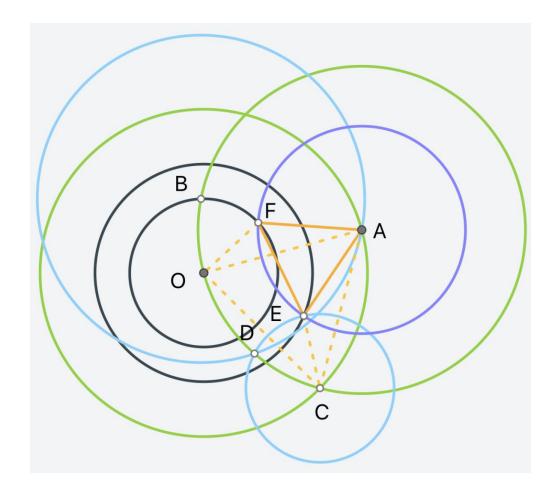
 $\triangle ABD$ 和 $\triangle AOC$ 是等边三角形, $\angle BAO = \angle BAD - \angle OAD = \angle OAC - \angle OAD = \angle DAC$, 故 $\triangle BAO \cong \triangle DAC$ (SAS), BO = DC. 证毕.

8E ☆ ৶

作法

- 1. 作圆 AO, 交圆 O_1 于点 B;
- 2. 作圆 *OA*, 交圆 *AO* 于点 *C*;
- 3. 作圆 BA, 交圆 AO 于点 D;
- 4. 作圆 CD, 交圆 O_2 于点 E;
- 5. 连接 *AE*;
- 6. 连接 *EF*;
- 7. 连接 *FA*.

则 $\triangle AEF$ 即为所求三角形. 作完.



由 13.3.1 知: CE = CD = OB = OF, 故 $\triangle AEC \cong \triangle AFO$ (SSS), 故 $\angle FAE = \angle FAO + \angle OAE = \angle EAC + \angle OAE = \angle OAC = 60^\circ$.

故 $\triangle AEF$ 即为所求三角形. 证毕.

13.4 Square in Triangle

Inscribe a square in the acute triangle ABC so that one of its sides lies on AC.

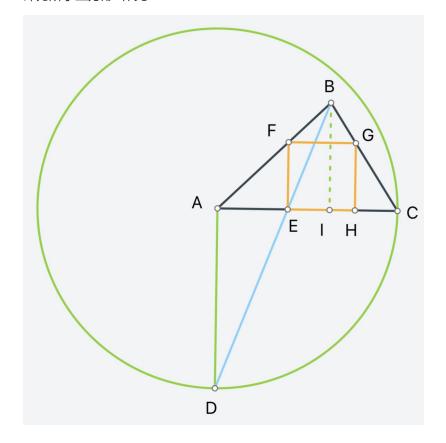
求作 $\triangle ABC$ 的 AC 边上的内接正方形.

注 可以任作 AC 边上的接于 AB 边的一个正方形, 再由位似作出所求正方形, 但这样需要 12L 16E.

作法

- 1. 作圆 AC;
- 2.作 $AD \perp AC$, 交圆 AC 于点 D;
- 3. 连接 *BD*, 交 *AC* 于点 *E*;
- 4. 作 $EF \perp AC$, 交 AB 于点 F;
- 5. 作 FG // AC, 交 BC 于点 G;
- 6. 作 $GH \perp AC$, 交 AC 于点 H.

则四边形 EFGH 即为所求正方形. 作完.



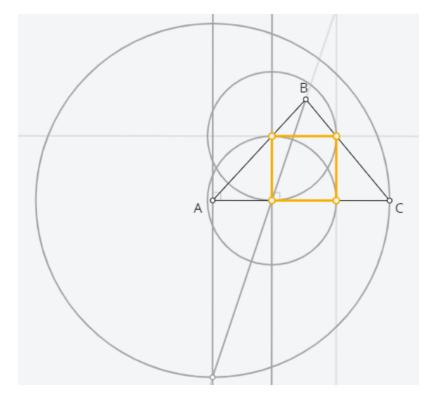
证明

作 $BI \perp AC$, 交 AC 于点 I, 则

$$\frac{FG}{AC} = \frac{FB}{AB} = \frac{EI}{AI} = \frac{EI}{AE} \cdot \frac{AE}{AI} = \frac{BI}{AD} \cdot \frac{EF}{BI} = \frac{EF}{AC},$$

故矩形四边形 EFGH 即为所求正方形. 证毕.

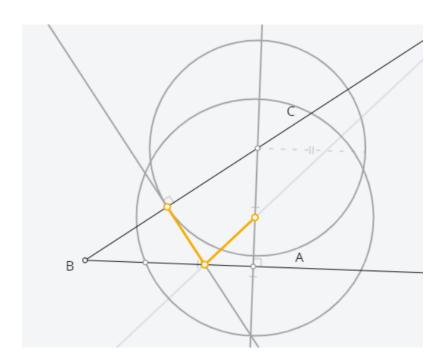
12E



注 与 13.4.6L 几乎完全相同.

13.5 Point Equidistant from Side of Angle and Point

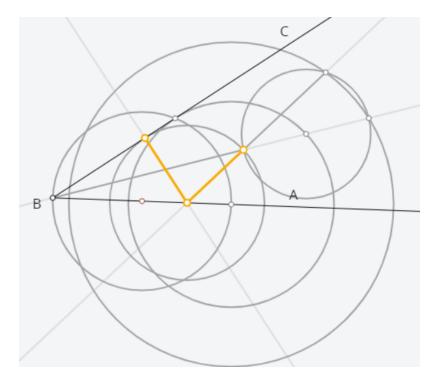
Given an angle ABC and a point M inside it, find points D on BA and E on BC and construct segments MD and DE of equal length so that DE is perpendicular to BC.



注 见 11.6.6L.

注 根据第二圆与 BC 的交点位置, 最多有两解.

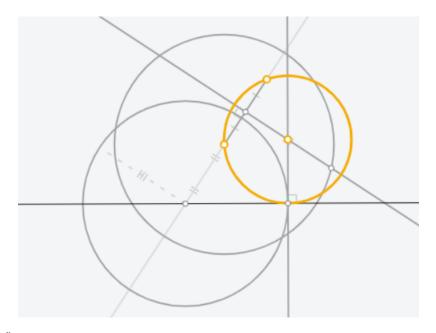
8E 🌙



注 见 11.6.11E.

13.6 Circle Through Two Points and Tangent to Line

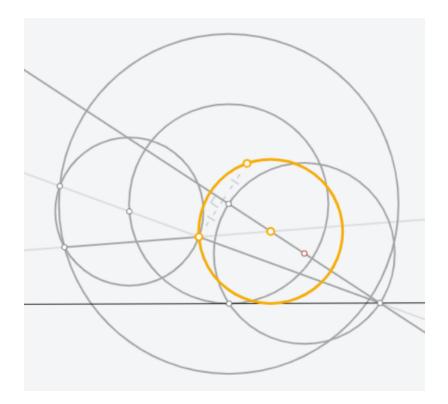
Construct a circle that goes through the two given points and that is tangent to the given line.



注 见 11.6.6L 或 13.5.5L.

注 此即阿波罗尼斯第二问题 (LPP), 最多有两解.

10E 🌙



注 见 11.6.11E 或 13.5.8E.

13.7 Inscribed Square - 2

Inscribe a square in the circle. A point on a side of the square is given.

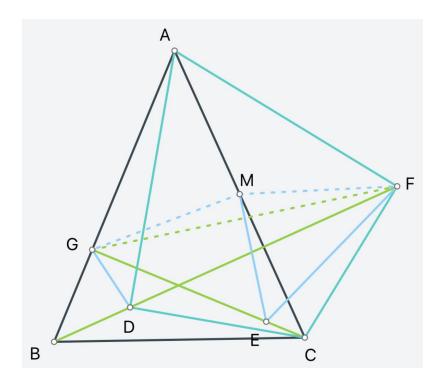
已知圆 O 和圆内一点 A, 求过点 A 作圆的内接正方形.

注 有对称的两解.

13.7.1 引理

已知: 在 $\triangle ABC$ 中, AB=AC, CG 是 AB 边上的高线, $BF\perp AC$, 且以 AC 为直径的圆交 BF 于点 D 与 F (BDF 三点的顺序任意). 点 M 是 AC 的中点, 点 E 在 CG 上, 且 GE=EF.

求证: $\triangle AGD \backsim \triangle MEC$.



 $\angle AGC = \angle ADC = 90^{\circ}$, 故 AGDCE 五点共圆, $\angle GDA = \angle GCA$.

故 $\triangle GME \cong \triangle FME$ (SSS), 且 ME 垂直平分 GF.

MG = CM, $\triangle MCE = \angle MGE = \angle MFE$, 故 MFCE 四点共圆.

$$\angle GFE = \angle FGE = \angle FAC = \angle DAC = \angle DFC$$

$$\angle GAD = \angle GFD = \angle GFE - \angle DFE$$

$$= \angle DFC - \angle DFE = \angle EFC = \angle EMC$$

已经证明 $\angle GDA = \angle GCA$, 故 $\triangle AGD \sim \triangle MEC$. 证毕.

注 1 或者设 $DF \cap ME = H$, 则 $\angle GAD = \angle GFD = 90^{\circ} - \angle MHF = \angle EMC$.

注 2 下证 $\triangle AGF \hookrightarrow \triangle MEF$, 即 $\triangle AGF \hookrightarrow \triangle MEG$.

$$\angle AFG = \angle ACG = \angle MGC$$
, 又 $DC = CF$, 故

$$\angle AGF = 90^{\circ} - \angle FGC = 90^{\circ} - \angle DGC = \angle BGD$$

= $180^{\circ} - \angle AGD = 180^{\circ} - \angle MEC = \angle MEG$

故 $\triangle AGF \sim \triangle MEG$. 证毕.

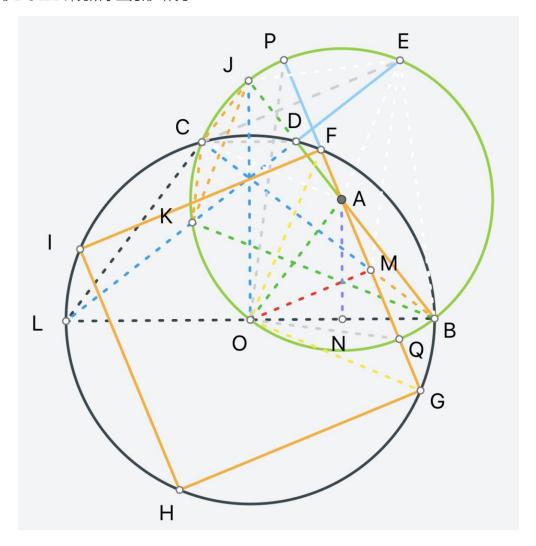
7L 🏡

作法

- 1. 作圆 AO, 交圆 O 于点 B 与 C;
- 2. 连接 *BA*, 交圆 *O* 于点 *D*;

- 3. 作 $DE \perp AB$, 交圆 AO 于点 E;
- 4. 作 CE 的中垂线, 交圆 O 于点 F 与 G;
- 5. 作 $HG \perp FG$, 交圆 O 于点 H;
- 6.作 $HI \perp HG$, 交圆O于点I;
- 7. 连接 *IF*.

则四边形 FGHI 即为所求正方形. 作完.



证明

1. 辅助线.

延长 AD, 交圆 AO 于点 J.

延长 ED, 交圆 AO 于点 K, 交圆 O 于点 L.

连接 JO, JC, LO, LC, OB, BK, KJ, OA.

连接 BC, 交 FG 于点 M, 连接 OM.

作 $AN \perp OB$, 交 OB 于点 N.

设GF交圆AO于点P与Q.

连接 OP, OQ, OF, OF, OG.

2. 对辅助线的一些说明.

 $BD \perp DE$, 故 BL 是直径, 即 LOB 三点共线.

 $\angle LCB = \angle JCB = 90^{\circ}$,故 JCL 三点共线.

 $JO \perp OB$, 故 $\triangle JLB$ 是等腰三角形.

OBEC 四点共圆, AONM 四点共圆.

AO 是 $\triangle JLB$ 其中位线, 且 $\triangle OAB$ 是等腰三角形.

注 1 注意到 BC, DL, JO 三线交于点 G_0 , 点 C 是 BG_0 与 JL 的交点, 且 CD // LB, 我们可以以此仅用无刻度直尺过圆上一点作直径的平行线.

3. $\triangle CJK \backsim \triangle MAB$. (见 13.7.1 引理)

注 2 还有 BMAE 四点共圆, 且 $\triangle CJE \sim \triangle MAC$, 不过这里我们用不到.

4. $\triangle AOM \backsim \triangle JKB$.

$$egin{aligned} \angle OAM &= \angle OAB - \angle MAB \ &= \angle LJB - \angle CJK = \angle KLB, \ \angle MOB &= \angle MAN = \angle NAB - \angle MAB \ &= \angle CJO - \angle CJK = \angle KJO = \angle KBO, \ \angle AOM &= \angle AON - \angle MON \ &= \angle ABN - \angle KBO = \angle JBK, \end{aligned}$$

故 $\triangle AOM \backsim \triangle JKB$.

注 3 BK, OM, AN 三线共点.

注 4 AN 是关键的辅助线.

5. $OF \perp OG$.

 $\angle OMA = \angle BKJ = 90^{\circ}$,故

$$OM^2 = PM \cdot MQ = CM \cdot MB = FM \cdot MG$$

故 $OF \perp OG$. 故四边形 FGHI 即为所求正方形. 证毕.

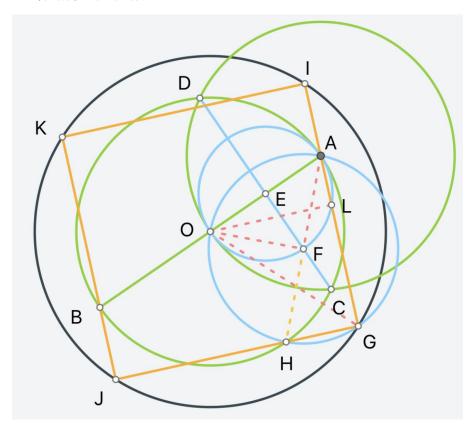
注 5 对 OM 所在三角形使用射影定理及其逆定理; 在圆 A 和圆 O 中分别对弦 BC 使用圆幂定理.

10E 🌙

作法

- 1. 作圆 *OA*;
- 2. 连接 AO, 交圆 OA 于点 B;
- 3. 作圆 AO, 交圆 OA 于点 C 与 D;
- 4. 连接 CD, 交 AO 于点 E;
- 5. 作圆 EO, 交 CD 于点 F;
- 6. 作圆 FO, 交已知圆 O 于点 G, 交圆 OA 于点 H;
- 7. 连接 GA, 交圆 O 于点 I;
- 8. 连接 GH, 交圆 O 于点 J;
- 9. 连接 JB, 交圆 O 于点 K;
- 10. 连接 KI.

则四边形 GIKJ 即为所求正方形. 作完.



证明

设 AG 交圆 EO 于点 L, 如图连线, 则

 $OL \perp AL$, $OF \perp AF$, $\angle OGL = \frac{1}{2} \angle OFA = 45^\circ$, 故 IG 即为所求一边.

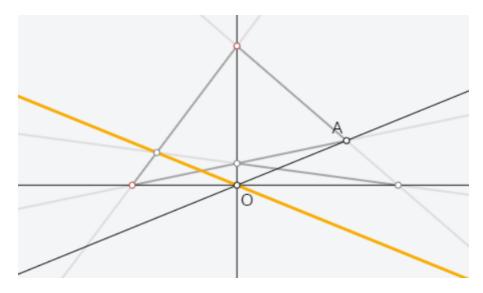
AFH 三点共线, 故 $\angle AGH = 90^{\circ}$, 故 GJ 为所求正方形另一边.

A 和 B 关于正方形中心 O 对称, 故四边形 GIKJ 即为所求正方形. 证毕.

13.8 Line Reflection

Reflect the straight line OA with respect to any of axes using only a straightedge. The axes intersect at right angle.

5L 5E 🌙



证明

注意到三角形的垂心即垂足三角形的内心, 仿射即证.

13.9 Square by Four Points

Construct a line through each of the given points so that all the four lines form a square in intersection. The points A and B should lie on parallel lines.

已知 ABCD 四点, 且作正方形, 使得 ABCD 分别在正方形各边的直线上, 且 A 与 B 在对边.

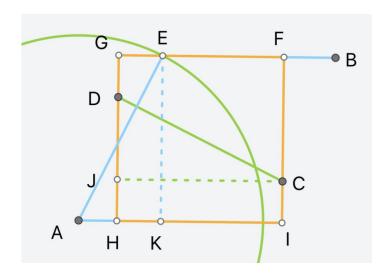
注 有两解.

7L 🌙

作法

- 1. 连接 *CD*;
- 2. 以 A 为圆心, CD 为半径作圆;
- 3. 作 $AE \perp CD$, 交圆 A 于点 E;
- 4. 连接 *BE*;
- 5. 作 $CF \perp BE$, 交 BE 于点 F;
- 6. 作 $DG \perp BE$, 交 BE 于点 G;
- 7.作 $AH \perp DG$, 交 DG 于点 H, 交 CF 于点 I.

则四边形 FGHI 即为所求正方形. 作完.



由作图过程知: 四边形 FGHI 是矩形.

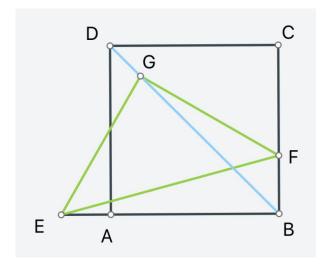
作 $CJ \perp GH$, 交GH 于点J, 作 $EK \perp AI$, 交AI 于点K,

则 $\triangle AEK\cong \triangle DCJ$ (ASA), GH=EK=JC=HI,

故四边形 FGHI 即为所求正方形. 证毕.

13.9.1 引理

若四边形 ABCD 是正方形, E 在直线 AB 上, F 在直线 CD 上, $\triangle EGF$ 是以 EF 为为斜边的等腰 直角三角形, 且 G 与 B 在 EF 两侧, 则 DGB 三点共线.



证明

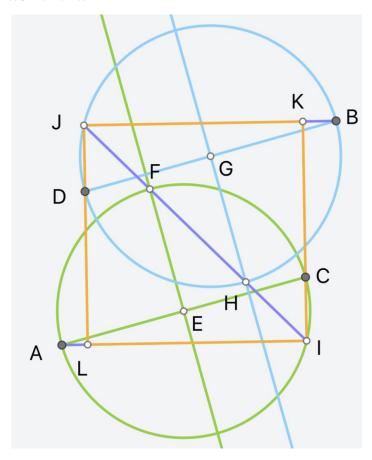
BEGF 四点共圆, 故 $\angle EBG = \angle EFG = \angle EBD$, 故 DGB 三点共线. 证毕.

15E ☆

作法

- 1. 连接 *AC*;
- 2. 作 AC 的中垂线 m_1 , 交 AC 于点 E; (3E)
- 3. 作圆 EA, 交 m_1 于点 F;
- 4. 连接 *BD*;
- 5. 作 BD 的中垂线 m_2 , 交 BD 于点 G; (3E)
- 6. 作圆 GB, 交 m_2 于点 H;
- 7. 连接 FH, 交圆 EA 于点 I, 交圆 GB 于点 J;
- 8. 连接 AI;
- 9. 连接 JB;
- 10. 连接 IC, 交 JB 于点 K;
- 11. 连接 JD, 交 AI 于点 L.

则四边形 IJKL 即为所求正方形. 作完.



证明

由 13.9.1 知: FH 即为所求正方形对角线.

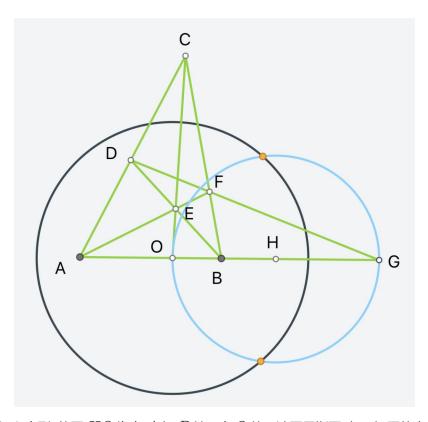
$$\angle KJI = \frac{1}{2} \angle BGH = 45^\circ$$
,同理 $\angle KIJ = \angle LJI = \angle LIJ = 45^\circ$.

故四边形 IJKL 即为所求正方形. 证毕.

13.10 Billiards on Round Table

Given a circle with center in O and points A and B on the same diameter. Construct a point C on the circe such that OC bisects the angle ACB.

9L



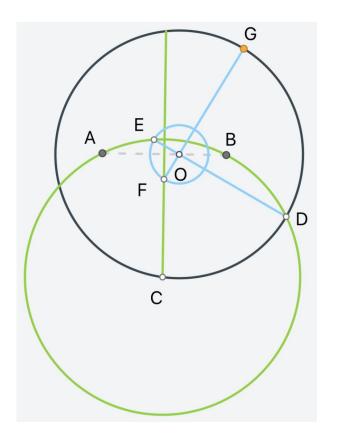
注 ABHG 成调和点列, 故圆 HO 为点 A 与 B 关于点 O 的阿波罗尼斯圆, 与已知圆的交点即为所求点.

5L ☆

已知圆 O, 点 A, O, B 共线.

- 1. 作 AB 的中垂线 m, 交圆 O 于一点 C;
- 2. 作圆 CA, 交圆 O 于点 D;
- 3. 连接 DO, 交圆 CA 于点 E;
- 4. 作圆 OE, 交 m 于点 F;
- 5. 连接 FO, 延长交圆 O 于点 G.

则点 G 即为所求点.



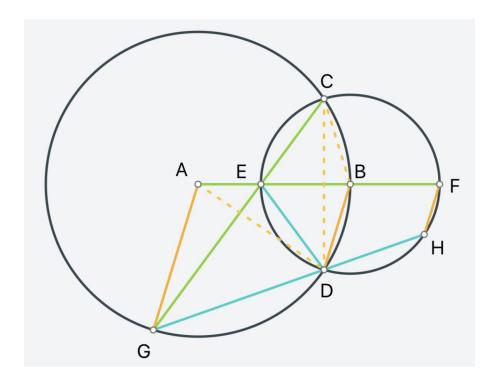
$$\angle DEF = rac{1}{2}(180^\circ - \angle EOF) = rac{1}{2}(180^\circ - \angle GOD) = \angle OGD$$
, 故 $DEFG$ 四点共圆. 故 $OA \cdot OB = OE \cdot OD = OF \cdot OG$, 故 $AFBG$ 四点共圆. 故 $\angle AGF = \angle ABF = \angle BAF = \angle BGF$. 证毕.

注 关键点是注意到 $\angle AGO = \angle BGO$ 等价于 AFBG 四点共圆.

13.10.1 引理

已知圆 A 上一点 B, 过 B 作半径小于 AB 的圆, 交圆 A 于点 C 与 D. 连接 AB, 交圆 B 于点 E 与 F , 其中 E 在线段 AB 上. 连接 CE, 交圆 A 于点 G, 连接 GD, 交圆 B 于点 H, 连接 FH. 则

- 1. AG // BD // FH.
- 2. GE = GD.
- 3. DE = DH.



 $\angle GAD = 2\angle GCD = \angle EBD = \angle ADB$, it AG // BD.

 $\angle BDH = \angle BCG = \angle CEB = \angle AEG$, 故 GE = GD, BG 垂直平分 ED.

 $\angle BDH = \angle CEB = \angle BED$, is DE = DH.

 $\angle AFH = 2\angle ECD = \angle EBD$, 故 BD // FH. 证毕.

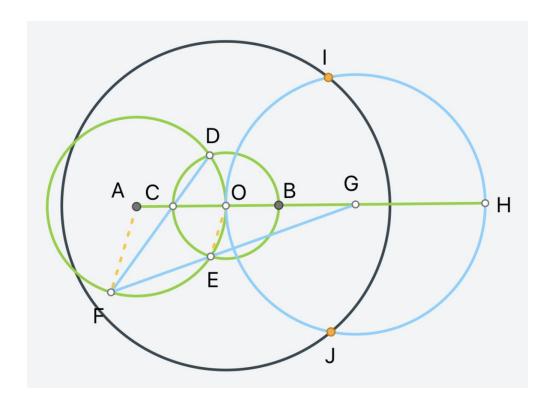
注 延长线段还有一堆性质.

6E 🌙

作法

- 1. 连接 AB;
- 2. 作圆 OB, 交 AB 于点 C;
- 3. 作圆 AO, 交圆 OB 于点 D 与 E;
- 4. 连接 DC, 交圆 AO 于点 F;
- 5. 连接 *FE*, 交 *AB* 于点 *G*;
- 6. 作圆 GO, 交 AB 于点 H, 交已知圆 O 于点 I 与 J.

则点 I 与 J 即为所求点. 作完.



由 13.10.1 引理知:
$$FO$$
 // EO , 故 $\frac{OA}{OB} = \frac{AF}{OE} = \frac{AG}{OG}$.

由阿波罗尼斯圆定理知: 若 $\frac{OA}{OB}=\frac{HA}{HB}$, 则点 I 与 J 即为所求点.

设OG = R,则

$$\frac{OA}{OB} = \frac{HA}{HB}$$

$$\Leftarrow \frac{GA}{GO} = \frac{HA}{HB}$$

$$\Leftarrow \frac{OA + R}{R} = \frac{2R + OA}{2R - OB}$$

$$\Leftarrow OA \cdot OG = OB \cdot (OA + R) = OB \cdot AG$$

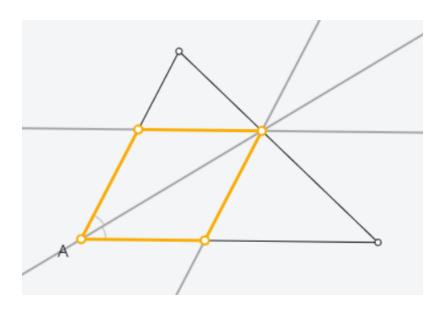
而这正是引理的推论. 故点 I 与 J 即为所求点. 证毕.

$14.\xi$

14.1 Rhombus in Triangle

Inscribe a rhombus in the triangle so that they share the common angle A.

3L



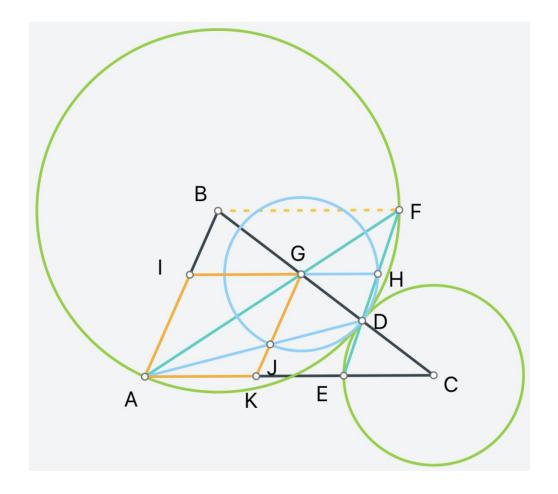
8E 🏡

求作 $\triangle ABC$ 的内接菱形, 旦共用 $\angle A$.

作法

- 1. 作圆 *BA*, 交 *BC* 于点 *D*;
- 2. 作圆 *CD*, 交 *AC* 于点 *E*;
- 3. 连接 ED, 交圆 BA 于点 F;
- 4. 连接 AF, 交 BC 于点 G;
- 5. 作圆 GD, 交 EF 于点 H;
- 6. 连接 HG, 交 AB 于点 I;
- 7. 连接 AD, 交圆 GD 于点 J;
- 8. 连接 GJ, 交 AC 于点 K.

则四边形 AIGK 即为所求菱形. 作完.



 $\angle FBD = 180^{\circ} - 2\angle BDF = 180^{\circ} - 2\angle EDC = \angle DCE$, by BF // EC.

 $\angle BAF = \angle BFA = \angle FAC$, 故 AF 平分 $\angle BAC$.

 $\angle GHD = \angle GDH = \angle CDE = \angle DEC$, is IH // AC.

 $\angle GJD = \angle GDJ = \angle BAJ$,故AB // KG.

故四边形 AIGK 即为所求菱形. 证毕.

14.2 Circle Tangent to Two Circles

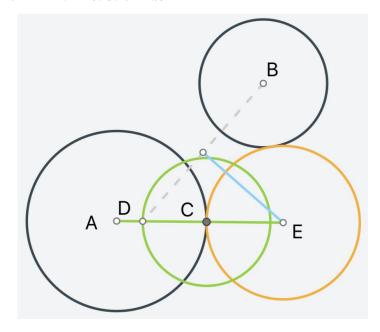
Construct a circle that is tangent to the two given circles and touches one of them in the given point. 求作一圆与已知圆 A 和圆 B 相切,且切于圆 A 上一已知点 C.

作法

- 1. 连接 *AC*;
- 2. 以 C 为圆心, 圆 B 半径为半径作圆, 交 AC 于一点 D;
- 3. 作 BD 的中垂线, 交 AC 于点 E;
- 4. 作圆 *EC*.

则圆 EC 即为所求圆. 作完.

注 取圆 C 与 AC 的另一交点为 D, 则有另一解.



证明

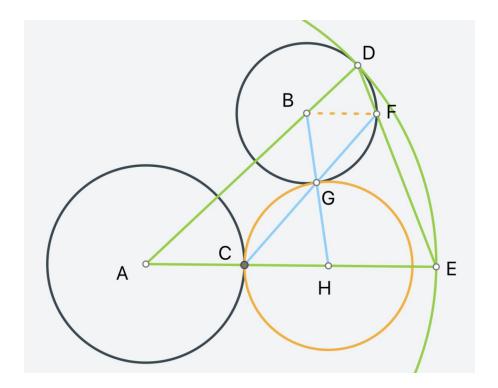
 $EA-EB=EA-ED=DA=CA-CD=CA-R_{B}$,故圆 EC 即为所求圆. 证毕.

7E 🌙

作法

- 1. 连接 AB, 交圆 B 于点 D;
- 2. 连接 *AC*;
- 3. 作圆 AD, 交 AC 于点 E;
- 4. 连接 DE, 交圆 B 于点 F;
- 5. 连接 CF, 交圆 B 于点 G;
- 6. 连接 BG, 交 AC 于点 H;
- 7. 作圆 HC.

则圆 HC 即为所求圆. 作完.



 $\angle BFD=\angle BDF=\angle AED$, 故 BF // AE. $\angle HCG=\angle BFG=\angle BGF=\angle HGC$, 故 HC=HG. 证毕.

14.3 Triangle by Tangent Point of Hypotenuse

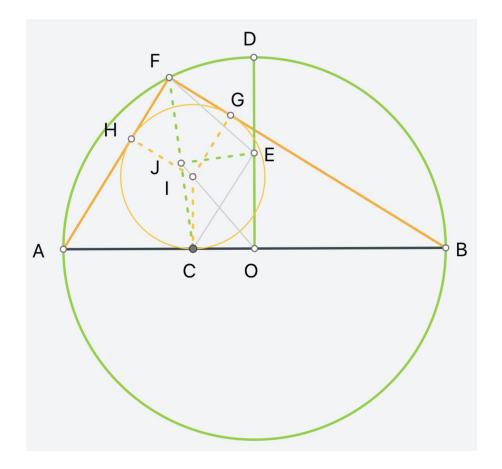
Construct a right triangle with the given hypotenuse and the tangent point of its incircle. 求作以已知线段 AB 为斜边的直角三角形,且内切圆交 AB 于一已知点 C.

6L 🌙

作法

- 1. 作 AB 的中垂线 m, 交 AB 于点 O;
- 2. 作圆 OA, 交 m 于点 D;
- 3. 作 OD 的中垂线, 交 OD 于点 E;
- 4. 作圆 EC, 交圆 OA 于点 F;
- 5. 连接 *AF*;
- 6. 连接 *BF*.

则 $\triangle ABF$ 即为所求作三角形. 作完.



设 FC 中点为 J, 则即证 $CF \perp EJ$.

以O为原点,OA为x轴,OD为y轴建系,

设
$$OA=1, AF=a, BF=b$$
, 则内切圆半径为 $r=\dfrac{a+b-2}{2}$. 故

$$C = \left(\frac{a-b}{2}, 0\right), \ F = \left(\frac{a^2}{2} - 1, \frac{ab}{2}\right), \quad J = \left(\frac{a^2 - a + b - 2}{2}, \frac{ab}{2}\right),$$
 $\overrightarrow{EJ} = \left(\frac{a^2 + a - b - 2}{4}, \frac{ab - 2}{4}\right), \qquad \overrightarrow{CF} = \left(\frac{a^2 - a + b - 2}{2}, \frac{ab}{2}\right),$

$$8\overrightarrow{EJ} \cdot \overrightarrow{CF} = (a^2 - 2)^2 - (a - b)^2 + a^2b^2 - 2ab$$

= $a^4 - 4a^2 + 4 - a^2 - b^2 + 2ab + a^2b^2 - 2ab$
= 0

故 $CE \perp EJ$, $\triangle ABF$ 即为所求三角形. 证毕.

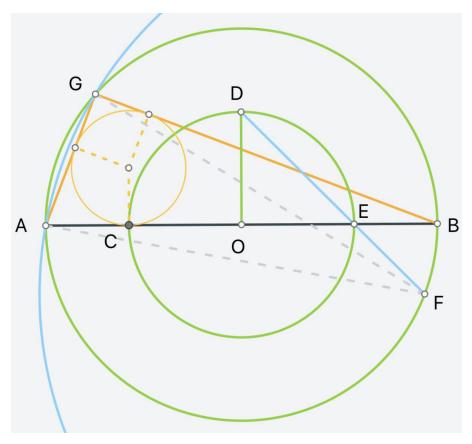
9E 🌙

作法

- 1. 作 AB 的中垂线 m, 交 AB 于点 O; (3E)
- 2. 作圆 OC, 交 m 于点 D, 交 AB 于点 E;
- 3. 作圆 OA;

- 4. 连接 DE, 交圆 OA 于点 F;
- 5. 作圆 FA, 交圆 OA 于点 G;
- 6. 连接 *AG*;
- 7. 连接 *BG*.

则 $\triangle ABG$ 即为所求三角形. 作完.



14.4 Parallelogram on Four Lines

Construct a parallelogram whose center is in the given point so that each of the given lines contains one of its vertices. Two of the lines are parallel.

已知 AB // CD, $AD \cap BC = E$, 求作顶点分别在这四条直线上的平行四边形, 且其中心为已知点 P.

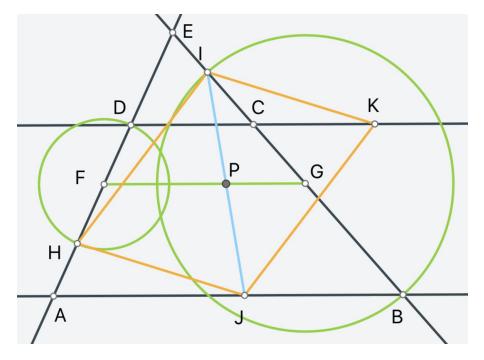
作法

- 1.作 PF // AB, 交 AD 于点 F, 交 BC 于点 G;
- 2. 作圆 FD, 交 AD 于点 H;
- 3. 作圆 GB, 交 BC 于点 I;
- 4. 连接 IP, 交 AB 于点 J;
- 5. 连接 *HI*;
- 6. 连接 HJ;
- 7.作JK // HI,交CD于点K;

8.连接 KI.

则四边形 HJKI 即为所求四边形. 作完.

注 若在第 3 和 4 步作圆 FA 和圆 GC,则有另一解.



证明

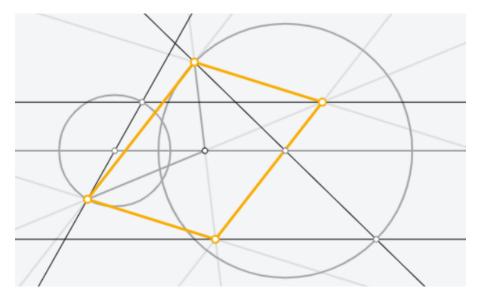
$$\frac{IP}{PJ} = \frac{IG}{GB} = 1 \Rightarrow IP = PJ,$$

连接 HP, 交 CD 于点 K', 同理 HP = PK',

则四边形 HJK'I 是平行四边形, K=K',

故四边形 HJKI 即为所求四边形. 证毕.

12E



14.5 Arbelos

Construct a circle tangent to the three given pairwise tangent circles whose centers are collinear.

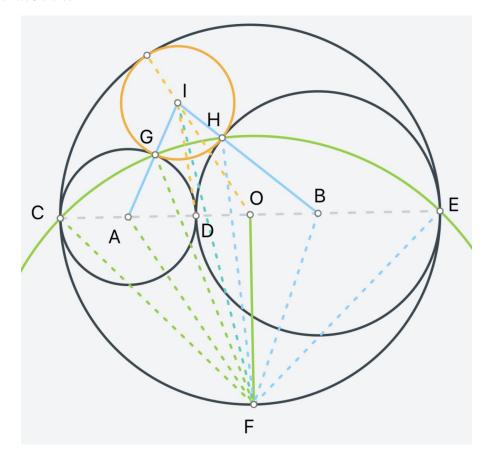
已知 O, A, B 三点共线, 且圆 O, A, B 两两相切如图. 求作一圆与此三圆两两相切.

5L 7E ☆

作法

- 1. 作 CE 的中垂线, 交圆 O 于点 F. (3E)
- 2. 作圆 FC, 交圆 A 于点 G, 交圆 B 于点 H;
- 3. 连接 *AG*;
- 4. 连接 BH, 交 AG 于点 I;
- 5. 作圆 *IG*.

则圆 IG 即为所求圆. 作完.



证明

如图作辅助线,则 $\angle ACF = \angle CFO = 45^{\circ}$,

$$\angle AGF = \angle CGF - \angle CGA = \angle GCF - \angle GCA = \angle ACF = 45^{\circ}$$
,

故 $\angle IGF = 135^{\circ}$, 同理 $\angle IHF = 135^{\circ}$.

故 $\triangle GIF \cong \triangle HIF$, IG = IH.

设
$$AD = r_1$$
, $BD = r_2$, $IG = r_3$, 则 $OC = AB = r_1 + r_2$, $OA = r_2$, $OB = r_1$,

设 $OI=d,\,DI=b$, 则只需证 $d=r_1+r_2-r$.

在 $\triangle IAO$, $\triangle IDB$, $\triangle AIB$ 中分别使用斯特瓦尔特定理, 解得 $r=\frac{r_1r_2(r_1+r_2)}{r_1^2+r_2^2+r_1r_2}$, $d=r_1+r_2-r$, 故圆 IG 即为所求圆. 证毕.